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The lifetime matrices for collision processes as described by the Klein—Gordon and Dirac equations
are formulated. The results obtained are exactly the same as in the case of a collision described by the
Schradinger equation. This gives us a consistent operator theory for the collision lifetime in the case

of potential scattering,

INTRODUCTION

HROUGH a series of papers published by
Smith,'® the formulation of the lifetime matrix
for collision processes and its applications were first
developed and introduced into quantum mechanies.
In these papers, Smith focuses his attention on the
interaction described by a Schrédinger equation.
As is well known, most collision processes in
nuclear and atomic physics are described by the
Schrédinger equation. The question is now raised:
is it possible to formulate a lifetime matrix for a
collision process at higher energy, where within the
potential theory of scattering, the Dirac and Klein—
Gordon equations are used to describe the dynamics
of these collisions?

This paper is devoted to the formulation of the life-
time matrix for interactions by Dirac or Klein—
Gordon particles and proves that with an equivalent
proposed form for the Q matrix, the relation be-
tween the Q and S matrices is the same as in the
case of a Schrédinger particle.

To illustrate matters more simply, we study first
the one-dimensional elastic scattering by Dirac

1F. T. Smith, Phys. Rev. 118, 349 (1960).
:F. T. Smith, J. Chem. Phys. 36, 248 (1962).
3 F. T. Smith, J. Chem. Phys. 38, 1304 (1963).
«F. T. Smith, Phys. Rev. 130, 394 (1963).

s F. T. Smith, Phys. Rev. 131, 2803 (1963).

particles, where no spin flip is assumed. It is shown
that although the Dirac wavefunction is more com-
plicated due to the presence of a spin part, the re-
sult still comes out nicely at the final step with the
usual simple relation between the Q matrix and the
phase shift.

Next, the case of elastic scattering in space with the
central force field will be studied. It is well known
that for a Dirac equation with a central force field,
there are two different phase shifts for a state with a
fixed value of j. These phase shifts are classified by
opposite values of the operator « and can be as-
sociated with those of the Dirac states which are
well defined not only with a value of 4, but also with
a space parity. This property of the Dirac states
implies that diagonal elements of the Q matrix
should be formulated with states which have a well
defined value of «. Exactly the same relation between
the elements of the Q and S matrices is found in this
case.

The lifetime matrix for inelastic scattering by a
Dirac particle is also formulated and again the rela-
tionship between the S and Q matrices is proved.

For the Klein-Gordon equation, in order to
simplify matters, we omit the investigation of in-
elastic scattering and only consider elastic seattering.
The results of this investigation show that the Q
matrix formulation for the Klein-Gordon particles
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is still possible and the relation between the Q and
S matrices is still valid.
1. DIRAC PARTICLE
A. One-Dimensional Elastic Scattering

The one-dimensional Dirac equation with the
potential V(z) is

lie, d/dx — fm — V(@)]y = Ey. 1)

This equation has the asymptotic solution,
o = A e ™ — ¢ xe*), )
where ue™***, xe™** are respectively incoming and

outgoing parts, 4 and x, the corresponding spinors,
7 is the phase shift, and A4 isa normalization constant.
The natural units, 2 = ¢ = 1, are used here. It
should be noted that the representations of the
spinors u and x are similar, except k in u should be
replaced by —k in x.

The definition of the lifetime @ for the collision
by a Dirac particle must be consistent with the non-
relativistic definition as given by Smith.! @ should
still be defined as the ratio of the average excess num-
ber of particles in the region of z from 0 to R to the
inward or outward flux across a boundary at 2 = R,
in the limit as R tends to «. This excess number of
particles is the difference between the number of
particles in the central region with the interaction
present and the number of particles in the central
region when the interaction is absent. The average
over R of this quantity is denoted by (I (R)).

The probability density and the flux through a
boundary at large are

p = ¢f(x)\(’(x):
and
F = —ot @, Y@).

Therefore, the explicit form of the delay time is
defined as

Q = lim I:fo (' @)¥@) ~ (Y'e¥) dxlv + |flux],
®3)

where
(¥ o¥) = ngn%fo oV oy dz. (4)

As in the case of a scattering by a Schrodinger
particle, it is possible to derive from the Dirac
equation (1) the equation

[ v = i(mlfaz ‘Z";f)R. (5)
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This equation is equivalent to Eq. (19) of Ref. 1.
It is also possible to show that

(¥ o) = 24* Au'u. (6)
The inward flux is equal to
F, = —A*Au'o.u. )

Explicit calculation of @ gives the following result,

¢
U o, Ou/OE sin (7 + ZkR)] ’

T
u o, U Av

= 1im | 91
Q—lun[aE+2

or,
Q = dn/okE. (8)

Thus, one sees that even for the scattering of a
Dirac particle, one arrives at the result derived by
Wigner.®

With S = €', Q is linked to S by the relation

Q = —i(38/3E)S". ©)
B. Elastic Scattering in Space

The Dirac equation for the central force is

(—ek — gm + V()Y = Ey (10)
Defining the new operators':
(a) the radial velocity operator
a, = (e1)/r, (11)
(b) the radial momentum operator
k, = (r-k — 9)/r, (12)
(¢) and the operator k, where
x = p(¢'-L 4 1), (13)
the Dirac equation is written as
[—ak, — da.Be/r — pm + V(@)ly = Ey. (14)

The eigenvalues of « are: 1, £2, £3, +4,---,
:!:(.7 + %): .

By using a representation in which H and « are
diagonal, the radial part of the Dirac state

_1 F(r)>
¥ = r (G(r)
can be automatically separated.

The radial part of the Dirac equation splits into
two parts

¢ E. Wigner, Phys. Rev. 98, 145 (1955). .
T L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, Inc., New York, 1955), p. 334.
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d*g/dr® + (k’ —kk + 1 + V? — 2EV

o’k

1o/’ 3a

o T 2% 4a2)‘7=° (152)

and
&’f/dr + <k2 — &k — 1 4+ V* — 2EV

ﬁ_/K 18" _ 33/2> _

where
g=G/a}; f=F/ﬂ¥; a,=da/dr) ﬂ’=dﬂ/d1‘,
o = de/dr?, g’ = d’g/dr,

wherea = E+m — V(r); 8 =E — m — V(r).

It is also well known that to each value j of the
total angular momentum J, correspond two opposite
values of kx, k = =4 (§ + ). These two Dirac states
behave asymptotically as states of opposite space
parity. These states of opposite parity have dif-
ferent phase shifts. We call them successively 7
[for the case x = (j + )] and 5" [for the case x =
—( + 3)]. It should be noted that the great and
small parts of a j state with fixed value of x have
a common phase shift.®

At large r, if the potential V (r) falls off faster than
1/r%, these Dirac states can be written explicitly as

4 [ﬁ*l,x;_l(kr) —~ e"“‘a*m.-l(kr)} (168)
"L Tl — eIt (k)

when k = j + %, and

A BIL.(kr) — ™" BT%, (kr)
r L*I,.d_l(kr) e LA ()

when k = —(j + 3).

The fact that there are two different phase shifts
for Dirac states defined with opposite values of «
implies that these collision states have different
delay times. Diagonal elements of the @ matrix
should be therefore defined with a state, not only
having fixed value of j, but also a definite space
parity.

The definition of the matrix element Q,, is then

Q.. = lim [ [ v tel v d’l

¥ =

P = } (16b)

+ |flux{,
(17

v
where

8 These results can be easily derived.

MATRICES FOR COLLISION PROCESSES
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t 1<% s
W) =5 [ pedr  @®
V is the volume of the sphere of radius R. It should
be remarked that the average was taken over a
sphere of finite radius R instead of a sphere of infinite
radius, because (¢! ¥.) falls off as fast as 1/R°.
The limit as E — o« should be taken only when the
integration over dr has been performed.

It is still possible to show that the matrix element
Q.. is equal to 94,/dE, where 1, is the corresponding
phase shift. In fact, from (14), the following relation
can be derived

7<R . a&x . R
f zﬁ:‘//,‘ dr = z((R:,,a, aE’ ,

(19)

where
Rer = ere (20)

An equivalent expression is (the flux is assumed
normalized to unity)

[ vivear

3G oF )’*
* £ _ (% «
(F ‘3 9o

= an/OE + 2R/y + -+,

where the notation + --- stands for the oscillating
bounded terms which vanish as the average over R
is taken. This equation is equivalent to Eq. (28) of
Ref. 1.

The flux through the surface of a sphere of large
radius B can be computed easily and is equal to

g-(- = —2,9 IAIz. (22)

Il

(21)

The normalization to unit flux would mean choos-
ing [A|* = 1/2k.

It is easy to show that the leading term of
I7<" (! )dr in the limit as R — « is 2R /v, where
v is the ordinary velocity of the particle.

Thus,

Quc = 31./0E = i8S, 38./9E, (23)
where
S, =e'™.

If the sign of « is not known, one must superpose
states of opposite values of x and definite § in order
to calculate the lifetime. One can write

¥ = an'l’i + aiz\l/?- (24)

The lifetime Q;; of a state ¢, is related to the life-
times @, and @' through the relation

Q;; = [a“[z Q.. + Ia,-2I2 Q::, (25)
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where |a;;|° and |a;,|° are the usual probabilities.
They are normalized such that

'%‘1'2 =+ 'aizlz = 1.
C. Inelastic Collision

The case where there are only two compound
particles in each reaction channel will be considered.
The reaction could be either of the type

A+ B— A* + B*,

or
A+B—->C 4+ D.

The system of particles is represented by a state ¥;,
the single label j represents a set of quantum numbers
such as the total angular momentum, the eigenvalue
of «, ete., as well as the total internal energy of the
compound particles, which in the incoming channel
of the state ¢; is E,.

The asymptotic behavior of the system corre-
sponding to the incoming channel j can be de-
scribed by

¢; = 91‘(0) @, 'I‘)w;(S)/’I‘, (26)

where w;(s) is the product of the wavefunctions
describing the internal behavior of the colliding
compound particles in the incoming channel j. The
total internal energy is E; with (E — E;)* = k} + &,
 is the reduced mass of the particles, and G;(¢, ¢, r) /7
deseribes the relative motion of the colliding com-
pound particles and is assumed to be a solution of a
free Dirac equation. The complete state function of
the system is

¥ = ¢; — ; Sik¢l:+)- (27)
The notation ¢.*’ has been used to indicate the
asymptotic outgoing states

B = §(0, o, Nar(S)/r. 28)

The external region of the configuration space
corresponding to a channel « is characterized by the
vanishing of a certain term V, of the Hamiltonian
H . If there is no exchange of particles in the reaction,
V . is assumed the same before and after the reaction
occurs. The reaction occurs in one unique channel o
in the restricted sense. In this case, H — V, = H,
will be the Hamiltonian of a set of eigenstates ..y,
which are products of the free wavefunction de-
scribing the relative motion and the wavefunctions
describing the internal states of the compound
particles.

"9 H. Ekstein, Phys. Rev. 101, 880 (1956).
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In this section, only the reactions of this type are
considered, since the Q matrix of a reaction with
exchange of particles can be derived from the former
by a natural extension.'

The element of the Q matrix is defined as

Ixl Isl<R
Q:; = lim U [ e d"‘R""‘] ’
(29)

where

1 ir) Is|<R s
0y = lime f b i dr dr.. (30)

R

To simplify matters, we examine the problem for a
simple system which depends only on two coor-
dinates: z, the coordinate of the relative motion
which must be always greater or equal to zero and
9, the coordinate of internal motion. The extension
to the more general case is straightforward.

In this case the incoming and outgoing wave-
functions at large z are,

¢:

I

A e uwy), (31a)

and

(+)
k

= A, e**xuy). (31b)

Within a unique channel, as defined above, the
states w; form a complete set of eigenfunctions. They
are orthogonal and normalized to unity,

f_ +: W (y) dy = ;. (32)

The following relation can be found

foE d f dydiv. = f dy(iw‘”“z 5 ) 3%

which is equivalent to equation (41) of Ref. 1.

The right-hand side of Eq. (33) can be calcu-
lated explicitly by using (31a), (31b) for ¢, and ¢;*’.
The following result is obtained,

R +®
f dx f dy'/’:'h
0 -
_E e Lo « 98
=5 bt R 21; Sk S ; Sk =E
_ _l_l % ~2ikiB _l_l 2ikiR
%in 12 S¥e %in 72 Sii € . (34)
It is also possible to show
RU’;,‘ = E‘ 51’,’ + Z S;"‘k .'klj" (35)
v % Uk
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Thus,
o N
Qi = —1 2; S oF (36)
or in matrix form,
Q = —i(3S/0E)S" = iS 9S'/9E. (37)

Integrating this last equation with suitable bound-

ary conditions, we get
S=1-i[ QESE)E. (9

E
It should be remarked that the Dirac equation
describes particles of spin % and since we have used
it to describe the relative motion of the compound
particles, the combined system in the eenter of mass
must have total internal angular momentum equal
0 3. A reaction in which each channel has compound
particles, one with total internal angular momentum
equal to zero and the other to 4 can be considered
as an example for this.

II. KLEIN-GORDON PARTICLE

Only potentials with certain forms are acceptable
for the Klein-Gordon equation.’® Because of this
limitation, the study of the inelastic collisions with
the Klein—Gordon equation is obscure. For sim-
plicity, we only investigate the formulation of the
lifetime matrix for elastic collisions by Klein—Gordon
particles.

A. One-Dimensional Elastic Scattering

The one-dimensional Klein—Gordon equation with
the potential ¥V (z) is,

—d*y/de’ + m'y = [E — V@I'y. (39

We consider the case where V(z) is a component
of a covariant 4-vector. The coordinate axes are
chosen such that the three other components of this
4-vector are zero.

The asymptotic solution of the Klein—Gordon
equation is

b = AT = o), (40)
where 7 is the phase shift of the interaction and
= (B* — m»)L
The lifetime @ is defined as
R
Q = lim [ f (p — {po)) dx:! + [flux|, @D
R 0 Av

where p and g, are the charge densities of the Klein-

10 Reference 7, p. 321.
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Gordon equation with and without the interaction
being present.
In this case,

p =[E — V@W*¢/m, (42a)

and,
Po = Ew‘p*m‘!’/mn (42b)

The flux of the Klein—Gordon equation can be
calculated by using the familiar expression

(st f)

2mi 43)

Thus, the inward flux through a boundary at
large z is

F, = —k |A]*/m.
If || is normalized to 1, |A]* = m/k.
From the Klein—Gordon equation, it is possible

to derive the following equation which is equivalent
to Eq. (19) of Ref. 1:

. _J_[Qﬁ.aﬂ _a__w_]
fo pax =5 38 0r — ¥V oo

Explicit calculation of the right-hand side gives

fR dx-—-—R+*—+l§Esm( + 2R). (46)
s P keE>M V! :

“4)

(45)

It can be shown that
_ o L (YEyty 28
(PO) = il_lg L./; m dx =

Thus, we arrive at the same relation between ¢ and
the delay time d7/8E,

Q = an/d3E.

(47)

“48)
Thus,

Q = —i(3S/eE)S, 49)
where

S =e".

A slight difference in the definition of the life-
time for the Klein—-Gordon case should be pointed
out. The lifetime @ was defined with the charge
densities p and p,. This would mean with an appro-
priate potential V' (z), p could be negative in a certain
range of z.

B. Elastic Scattering in Three Dimensions

Here, the potential is assumed to have arisen from
a central force such that V = V(r).
The Klein-Gordon equation is written as

(=V? + m)Y@) = [E - VOIy@.  (50)
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The radial wave equation is
d’ (+1
d%: | ( ( + ))

where ¥ = E* — m®.
If the potential V(r) falls off faster than 1/+°, the
asymptotic solution of the Klein—Gordon equation is

«¥u(r, 6 M) Y1a(0, @)/, (52)

2EV)¢! =0,
(1)

o, + (V* —

’ ‘P) =
with
wbr = AL (kr) — "' I4(kr)]. (53)

I,(kr) and I%(kr) are the usual incoming and out-
going radial waves.

The elements of the @ matrix are to be associated
with lifetimes of the collision systems which have
well-defined angular momentum.

Thus,

o= pm[ [ (5

‘/’z

— <:'°—¢1‘E~°';‘ﬁ>) dr] Lolfhx|,  (54)
m Av
where
m‘I/ﬁEoﬂpl — __];_ Tk mwﬁEwwl
< m >_ Vf m dr
i1
=+ [ ot Zear 09

The inward flux through the surface of a large
sphere of radius R is calculated in the usual way and
we get

F, = —k [A]*/m. (56)

|5| is normalized to unit flux, thus |A]* = m/k.
In a similar manner, the following relation is found

f YiE — V) _ 1 (aqs;* 3y

* a¢l>
ar oF Y 3E or

m 2m

=2R/w + o, /0E + --- . (B7)

Also,

r<R
[ <m¢"2Em¢z> g 58)
m

Thus,

sz = a’h/aE (59)

Il

—1iS¥ 88,/0E,
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where
S; = e“” .

Thus, the same relation between the Q and S matrices
is found,

Q = —i(3S/9E)S', (60)

where S is a diagonal matrix with the diagonal ele-
ments 8, = ¢'",

III. CONCLUSION

Together with the results obtained by Smith in
his first paper,' this work shows that the lifetime
matrix can be formulated for all three dynamical
equations (Dirac, Klein~Gordon, and Schroédinger)
which are the available equations in the potential
theory of scattering. The Dirac and Klein-Gordon
equations are used in the case where relativistic
effect must be considered.

We have also shown that most of the applications
of the lifetime matrix as given in Ref. 1 can be
derived in a similar fashion for the Klein-Gordon or
Dirac equations although the computation in general
needs more effort.

It should be pointed out that the relation between
the Q and S matrices were only proved for potentials
which fall off faster than 1/+°. For the scattering
by a Coulomb potential, certainly, a new develop-
ment is needed.

Since the relation between the Q and S matrices
can be proved with all three dynamical equations
within the potential theory of scattering, it is sug-
gested that the relation between the Q and S matrices
be accepted as a definition of one in terms of the
other and vice versa in the theories where no poten-
tial exists. Since the theories for the S matrix have
been well developed and established, the properties
of Q could be known through those of S.
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We construct a set of harmonic functions carrying all the irreducible representations of the group
SU(3). Bome features of these functions are discussed in detail.

1. INTRODUCTION

N important problem in the representation

theory of linear Lie groups is the construction
of basis vectors which transform according to irre-
ducible representations of the group. For GL(n) the
problem can be solved completely by constructing
tensors of assigned symmetry, in an n-dimensional
(in general complex) vector space.’ By appropriate
specialization of these tensors we can construct basis
vectors for any of the classical subgroups of GL{(n),
for example SU{n). The actual construction of these
tensors involves standard manipulations with the
algebra of the symmetric group; the process, how-
ever, becomes rapidly messy as we consider rep-
resentations described by tensors of rank higher
than 3.

An alternate procedure for constructing basis
vectors, which bypasses the tensor analysis, is af-
forded by the theory of harmonic functions.®? For
our purpose, these functions may be defined as
follows: Let 9 be a differentiable manifold on which
we can implement, as mappings, the transformations
of the group G. Furthermore, let 97 be such that
for every pair of points on 9, there exists an element
of G which takes ope into the other. Now define a
metric on the manifold

ds’ = g;; d’ da’
and the invariant Laplace-Beltrami operator®

* Work supported by the National Science Foundation
at the Institute for Advanced Study and supported, in part,
by the U. S. Atomic Energy Commission during the author’s
stay at Brookhaven, Summer 1964.

1 Present address.

1 See, e.g., H. Weyl, The Classical Groups (Princeton
University Press, Princeton, New Jersey, 1946), Chap. IV.

? The mathematical literature on this subject is very
extensive. We shall presume no foreknowledge on the part of
the reader beyond some simple facts about the ordinary
spherical harmonics. For a modern discussion, and a fairly
complete list of references, see F. A. Berezin and 1. M.
Gel'fand, Amer. Math. Soc. Translations 21, 193 (1962);
F. A. Berezin, ibid., p, 239 et seq.

3 See, e.g., 0. Veblen, Invariants of Quadratic Differential
Forms (Cambridge Tracts in Mathematics and Mathematical
Physics, No. 24, 1952).

g=det(g.r), ¢" =@ N

‘We shall refer to the eigenfunctions of Ay as the
harmonice functions of ¢ on M. By requiring these
funetions to be simultaneous eigenfunctions of all
available commuting operators viz. (1) commuting
generators of G; (2) invariant operators of G; (3)
invariant operators of the subgroups of G, we can
construct basis vectors out of the harmonic func-
tions.* While it is obvious from the start that these
vectors carry representations of G, it can be demon-
strated without much difficulty that the representa-
tions they carry are, in fact, irreducible. It is im-
portant to note, however, that manifolds may exist,
which satisfy the conditions stated earlier, and which
lead to some but not all the irreducible representa-
tions of G.

The above remarks can be illustrated by con-
sidering the group SU(2)." The two-dimensional
sphere is an invariant manifold and the eigenfunc-
tions are the usual spherical harmonics Y7(6, ¢).
These functions are simultaneous eigenfunctions of
the two commuting operators and carry (2l + 1)-
dimensional irreducible representations of SU(2).
Since [ is an integer, we obtfain in this way only
one-half of all the representations; to obtain all the
representations the manifold must be enlarged. The
connection with tensor analysis is immediate; the
¥} are nothing but the components of irreducible
Cartesian tenscrs constructed out of the coordinates
of a single point on the 2-sphere.

The purpose of the present paper is to construct
a set of harmonic functions which carry all the
irreducible representations of the group SU(3). This
group has assumed a position of paramount impor-
tance in the theory of strongly interacting elementary

+ H. Weyl, Ann. Math, 35, 486 (1934).

8 For 8U(2), our notation follows that of A. R. Edmonds,

Angular Momenium in Quantum Mechanics (Princeton Uni-
versity Press, Princeton, New Jersey, 1957).
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particles® and it seems desirable to study this group
in all its aspects. The physicist who is also an expert
in group theory may find our considerations an in-
teresting variant on customary procedures and be
amused by the very simple nature of the harmonic
functions which, to the best of our knowledge, have
not been recorded in the literature. For the neophyte,
we hope that the paper is also of some didactic value.

2. REPRESENTATIONS OF SU(2)

In order to establish the notation, and illustrate
the procedure in a familiar context, we construct
functions carrying all the representations of SU(2).
There is no new result in this section.

Let z;, 2z, be two complex variables providing a
point field for implementing the transformations of
SU(2). [|21]* + |z2|* = 1]. Introduce spherical co-
ordinates

2, =¢%cos0; 2z, =¢e"sind (2.1)

andlet 0 < 0 < 7/2,0 < ¢ < 2, 0 < ¢, < 2m.
The complex vector (z,, z,) sweeps over all the points
of a 3-sphere, thus the defining point field is con-
gruent to the group manifold itself. This is a very
special feature of SU(2) and does not occur for the
higher groups whose dimensionality is larger than
the dimensionality of the defining representation.
The invariant metric is given by

ds* = |dz,|’ + |dzal”
= d§* + cos’ 0 dé; + sin’ 6 do;

and the Laplace~Beltrami operator is

2.2)

o1 _a_(- i)
A“—sinecoseaa smecosoag

1 & 1 @
+ cos® 6 9¢° + sin® 0 o¢

(2.3)

The eigenvalues of A; are —n(n -+ 2) where n
is a positive integer,” the eigenfunctions are solu-
tions of

[A; + n(n + 2)]Y = 0. (2.4)

In Eq. (2.4) the variables separate completely and
the general solution can be constructed out of ele-
mentary solutions in the usual manner. The elemen-
tary solutions, regular over the point field, are given
by

Y::um. = e-’(m,¢.+m.¢.) dz’(.ml +mg) h(myi—m,y) (20) (25)

¢ M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne’eman,
Nucl. Phys. 26, 222 (1961); A. Salam and J. C. Ward,
Nuovo Cimento 20, 419 (1961).

7 The eigenvalues of the Laplace-Beltrami operator on a
» sphere are —n(n + v — 1), where = is a positive integer.
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where the d functions are defined in terms of Jacobi
polynomials, exactly as in Edmonds.® The functions
Y, ., constitute a complete orthogonal set with the
density function g = sin 6 cos 6.

In order to identify the separation constants, n,
m,, M, we need the Lie algebra in terms of dif-
ferential operators involving 8, ¢,, ¢,. The requisite
expressions are

1( 4 a

H1=§;<5E— 67;>’ (2.6)

B - é_;\@e,.u,,_,,,)[é%_i_tax; 05%_'_ co;, B'a%]’ @
E_=E. (2.8)
with the Casimir operator® given by
I'=H} + {E,,E_}

= _i[a%“" (cot 8 — tan 0)%

2 2
+ 55 3 +g;11—5§;} @.9)

Hence
Y =II+1)Y 00, I=in, (2.10)
HYmm =LY, I, = 3(m, — m,). (2.11)

Note that we get a set of harmonic functions for
every allowed value of $(m; + m,); 2I + 1 in all.
The occurrence of this extra index is of course due
to the fact that we have been working on the full
group manifold and have thus picked up not only
the harmonic functions but also the representation
matrices.

3. REPRESENTATIONS OF SU@3)
A. Preliminary Considerations

Let (2, 2,5, 23) be three complex variables subject
to the constraint

22 + [2al® + |za|* = 1. 3.1)

The complex vector z; now sweeps out the points
of a 5-sphere. Clearly the 5-sphere is an invariant
manifold for SU(3), indeed it is an invariant mani-
fold for SO(6) which is homomorphic to SU(4) and
contains SU(3) as a subgroup. By working on this
manifold we do not expect to pick up all the irre-
ducible representations of SU(4); we shall show,
however, that one can pick up all the irreducible
representations of SU(3).

8 By Casimir operator we shall mean any operator of

[8)
second or higher dr:agree, constructed from the Lie algebra
and commuting with all the infinitesimal generators.
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The transformations of SU(3) are implemented
as mappings of the form (2,, 2z,, zs) — (2f, 25, 25).
We can, in fact, demonstrate quite easily that to
every pair of points P = (z,, 25, 23), @ = (2, 24, 25),
there always exists a transformation of SU(3) that
will take P to @ (or @ to P). Let us denote by R
the point (1, 0, 0) and let u,, u,, u; be a triad of
complex numbers such that

ule, 4 ute, 4 ule; = 0,
lua* + Jua]® + Jusf® =

Then the matrix

3.2)
3.3

fu—y

2 2% 2%

M@P - R) = {ut u% u%l, 3.4)

W, W, W,

where w; = D _ ;i €:ix2;Us, is unitary unimodular and
takes P to R. Similarly, we can construct a matrix
which takes @ to R, and hence the matrices which
take P to @,

MP - Q) = M(Q— RM(P — R),
and @ to P,

M@Q — P) = MY{(P - Q). (3.6)

Thus the 5-sphere is a suitable manifold for

studying the irreducible representations of SU(3).

It will be convenient to parametrize the manifold
in spherical coordinates

(3.5)

2, = €% cos 6

2, = ¢ 8in 6 cos £, 3.7
z; = ¢ 5in O sin ¢
0<¢;<2m 0<0<T; 0<E<y (38)

The invariant metric is then given by
ds’ = |da|* + |dz.]” + |dza|*
= d6® + cos® 0 d¢?
+ sin® 0(dg” + cos® £ d¢; + sin® £ de3). (3.9)
Note the embedding of the group space of SU(2)

inside this manifold.

B. The Lie Algebra

Before we proceed further it will be convenient
to have at hand the generators of infinitesimal trans-
formations of SU(3). The simplest procedure is to
write down the generators of SU(2) in complex
Cartesian coordinates; the analogous construction
for SU(3) is then quite transparent. We shall label
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the generators and their linear combinations in
accordance with Behrends et al.’; the numerical
factors etc. are chosen such that the commutation
relations agree with those of this reference.

The eight independent generators, with six of
them combined into raising and lowering operators,
can be exhibited as

Hl = (22 82 — 23 63 b z’; 3’5 + Z"é 6"5)/2\/?; (3-10)
-1 (__6_ _ _cz)
T 20v3 \8¢, 8¢/’
H, = (“‘23'1 O+ 2, 0; 25 0y
4 2% 0% — 2% 9% — 2% 0%)/6 (3.11)
1 ( 3 d a)
==|-2—+ — —1,
6i \"2 3. T 36 T 3,
E., = (2,05 — 2% ag)/ﬁi 3.12)

1 ioemsn| @ +t_3*11_51 + E’P_E_a_],

Tovet Lee T Td ak T T4 o
E.s = (29, — 2t 9%)/6} 3.13)
= 2——\—1/—6 A | —cos ¢ -;)—0 + cot §sin ¢ a%
cot 8 9 tanocosg_a_]
+ 7 €08 £ ¢, + 1 ¢, |’
By = (2 0, — 2% 0%)/6} (3.14)
= 2\1/(_‘) e‘“’“""[—sin £ % — cot § cos ¢ gé
4 cote a ta.nesinz_i?_jl
% 5in £ 9, 7 9¢, I’
E..=E,, a=1,23. (3.15)
(Note: 8, = 8/92;, * means complex conjugate,

t means Hermitian conjugate.)

From the generators one can construct the quad-
ratic and cubic Casimir operators for SU(3). For
the quadratic operator we have

02 = H? + H: + Z {Ea; E-—a}

__1[& 2,1 &

= 12[a02+(3°°t6"tan9)ao+sm”0?
1 ] 1 @

+ s (cot £ — tan §) 3% + Py

PN SN N

sin® ¢ cos® £ ¢, ' sin® 6 sin® ¢ d¢:

1(1 ¥ 1)]

+3 8¢1+8¢»2+6¢3 . (3.16)

’R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W.
Lee, Rev. Mod. Phys. 34, 1 (1962).
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Notice the existence of a linear operator

o =1L+ 2y ajf,—) (3.17)

1 \3¢, ' O¢.
which commutes with all the generators of SU(3)
and thus lies in the center. We leave it as an exercise
to the reader to show that the cubic Casimir operator
can be written as

Finally we must choose an embedding of the Lie
algebra of SU(2) inside that of SU(3). Our choice
is dictated by the requirement that SU(2) and U(1)
appear as mutually commuting subgroups of
SU(3)."* This requirement is manifestly satisfied
if we take (H,, E.,, E_,) to constitute the Lie
algebra of SU(2) and H, as the infinitesimal gen-
erator of U(1). The Casimir operator of this SU(2)
is given by

1

P &’ 3
= —ilo2 + (cot £ — tan §) 2%
19 _;_gi]
+oisd Tanriag) G119

C. Harmonic Functions of SU(3) on the 5-Sphere

Corresponding to the metric Eq. (3.9) we obtain
the Laplace-Beltrami operator

1 i<~s i) 10
As TS’ fcos B9\ ocoseae +005206¢f

1 1 af. a_)
+sin2 0 l:singcossas (smg cosgag

Lo Lo 1o }
cos’ £ d¢; ' sin’ £ d¢s
= 3C? — 12C,. (3.20)

The eigenvalues of A; are” —n(n + 4), where n
is a positive integer; the equation to be solved is
therefore

AsY +n(n+ 4)Y = 0. (3.21)

Since the variables separate completely in Eq. (3.21)
we can again construct the general solution out of
elementary solutions. The dependence of the ele-
mentary regular solutions on £, ¢, ¢; is in fact
already known to us from our discussion of SU(2);
the dependence on ¢, is trivial. Separating out these
variables we obtain

10 There are two algebraically distinct embeddings of the
Lie algebra of SU(2) in SU(3). The embedding other than
the one adopted here corresponds globally to SO(3) and is
discussed in detail by A. Dragt, ‘“Classification of Three
Particle States According to SU(3)"’ (I1AS Preprint).
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Y:.nxm.mnf — @:u ,1(0)

X d;(mn-m;).}(m.-m;)(2E)e;(m‘¢‘+m'¢’+m'¢'), (3,22)
where O satisfies the differential equation
1 df., g@)
sin® § cos 6 d6 (Sm b eos 635
mi 4Id + 1)} ‘
=+ [n(n +4) — 0’0 s’ ® = 0. (3.23)

If we choose cos 26 as the independent variable in
this equation, it reduces to a standard Papperitz
equation'' soluble in terms of hypergeometric func-
tions. It is more convenient, however, to put
© sin § = ©,. The regular solution for ®, then
turns out to be simply another d function.® Carrying
out the necessary reduction we obtain

i{migs+mada+tmags)

Ymmum.l . €
" sin 6

X dzgnmti)zlu) .s}(m,—2t—1)(20)
X dg(m,m,) .%(mz"ms)(2£)'

The separation constants which occur in these
functions can be readily identified in terms of the
parameters customarily used® for characterizing the
irreducible representations of SU(3) and for labeling
the states in a given representation.

The irreducible representations are defined through
the transformation properties of symmetric traceless
tensors with p contravariant and ¢ covariant indices.
If such a tensor is constructed out of a single complex
veetor (2, 25, 23), its components are homogeneous
polynomials of degree p + ¢. Hence

(3.24)

n=7p-+q (3.25)

Now consider the transformation of these poly-
nomials under the simultaneous phase transforma-
tions ¢, — ¢; + e Clearly the polynomials get
multiplied by a common phase factor e'*®"®. The
eigenvalues of the infinitesimal generator are there-
fore p — ¢. This infinitesimal generator is none other
than the central operator C, introduced earlier;
hence the identification

my 4+ me -+ my =p—q (3.26)

The reader may check these identifications by cal-
culating the eigenvalues of, say, the quadratic
Casimir operator, which are $(p°+q¢°+pg+3p+3¢).

The states within a representation can be labeled
through the eigenvalues of I*, I; = v3H,, Y = 2H,,
_Tl—S;e_,_t;g., P. M. Morse and H. Feshbach, Methods of

Theoretical Physics (McGraw-Hill Book Company, Inc.,, New
York, 1953), pp. 539.



A SET OF HARMONIC FUNCTIONS FOR THE GROUP 8U(3)

i.e., the total isotopic spin, its projection along the
3-axis, and the hypercharge, respectively. Note that
the physical hypercharge could have been defined
as some other multiple of H, rather than twice H,.
The factor of 2 is chosen in accordance with the
eightfold way of Ref. 6.

With these identifications we can write the har-
monic functions as

(p.a) 1 3 (p+a+1)
I,I5,Y sm 9 d%(p—a—s Y+6I+3).}(p—q—-3Y—6I-3) (2 0)

I
X d%(p—a)+}Y,Is(2£)
x e%i(p—a) (¢1+¢9+¢-)ei1a(¢r‘¢:)

X e;«:(Y)(—2¢,+¢.+¢.)

(3.27)

The functions ¥{%;¥ , constitute a complete orthogo-
nal set over the interval

0<0<4r, 0<t<ir, 0<¢;<2nr
G=123 (328
with the density function
g' = cos 6 sin® 0 cos ¢ sin £. (3.29)

Furthermore, these functions are regular (and thus
single valued) for all nonnegative integer values of
p and ¢. Thus they are carriers of all the irreducible
representations of SU(3).

It is important to note that while the ¢ #;2; carry
all the irreducible representations of SU(3), they
also carry some representations of U(3). These rep-
resentations of U(3) are such that the extra con-
served quantum number is precisely p — ¢, as is
obvious from the fact that the operator C, can be
regarded as a generator of the nine-dimensional group
U(3). The emergence of these representations of
U(3) is due to the fact that the harmonic functions
were constructed out of the coordinates of a single
triplet z° and its complex conjugate z; ~ (2°)*
(antitriplet). A simple example will suffice to illus-
trate the point: Let 2°, u* be two distinct triplets
and let us compound them to form the basis vectors
of the adjoint representation of SU(3). There are
three distinct constructions

Yo = u's; — $8i(u'2), (3.30)
Yo = uifikzukzl; (3.31)
‘p—l = u,'éiklukZZ. (3.32)

Under phase transformations z° — ¢*%2*, u* — e*u

Yo = Yo, Y1 — €%y, Yoy — €%, By restricting
ourselves to a single triplet, we can realize ¥, but not
¥.+1 OT Y.y, i.e., we pick up an octet which transforms
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irreducibly under U(3) and is left invariant by those
transformations of U(3) which do not belong to
SU(3).

4. CONCLUDING REMARKS

We have found a set of harmonic functions ca-
pable of carrying all the irreducible representations
of SU(3). These functions constitute a complete
orthogonal set on the 5-sphere. By doing some
“surgery’’ on the 5-sphere we could have restricted
ourselves to representations of the quotient group
SU(3)/Z; which may well be the group of interest
in physies, rather than the full SU(3). This “surgery”’
congists of defining the manifold through

0<0<ir, 0<t<3r, 0<¢ +¢+¢s < 2m,
OS¢’2_¢3S4T, OS_2¢1+¢2+¢‘3S4W.(4.1)

The representations are then characterized by

P — ¢ = 0 mod 3. 4.2)

A shortcoming of these harmonic functions is the
emergence of very specific representations of U(3).
If all physical states carry these representations,
invariance under U(3) would result in the additive
conservation of p — ¢; while this is all right for
meson systems, it is certainly wrong for baryon
systems. One can get rid of these representations
altogether by constructing bzlocal harmonics of arb-
itrary parentage

(2, w) =

(p a) (p.a)»
I Is, Z P(m.a:).(m.a.)
{p1,a1)
(p2.a2)
v

X E I(mI:h)Y (Z)‘Vm il v (W)

115y’
Iy

(pI} QI) (p27 92) (p) Q)v
'Ly’ A7’y (ILY)

N CR)

where the last symbol in the rhs denotes a Clebsch—
Gordan coefficient'® for SU(3) (the index » reflects
the fact that the group is not simply reducible) and
the P’s are arbitrary parentage coefficients. The ¥’s
are eigenfunctions of commuting operators con-
structed out of the infinitesimal generators, these
generators may be taken to be a linear superposition
of the infinitesimal generators at z and u respec-
tively.'* Note that the U(3) operator C; = C,(z) +

12 M. Moshinsky, Rev. Mod. Phys. 34, 813 (1962); J. J.

deSwart, ¢bid. 35, 916 (1963).
13 Equatlon (3 18) must now be read as

= J[27C, — J* + 9]/162,
where J is some operator whose eigenvalue is p — g¢.
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C,(u) is no longer diagonal. We can, of course, adjust
the parentage so that C, is diagonal; the harmonics
would then carry all the irreducible representations
of U(3) as well.

Finally we remark that the most general sets of
harmonics would be obtained by working on the
group manifold itself. Here we are faced with a
problem of mathematical tractability that we have
not yet resolved.

M. A. B. BEG AND H. RUEGG
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We define operators that lower or raise the irreducible vector spaces of a semisimple subgroup
of a semisimple Lie group contained in an irreducible vector space of the group. We determine the
lowering and raising operators for the canonical subgroup U,_: of the unitary group U.. With the
help of these operators, which are polynomial functions of the generators of U,, and the corresponding
operators for the subgroups in the canonical chain Up D Unoy D --+ D Uz D Uy we can obtain,
in this chain, the full set of normalized basis vectors of an irreducible vector space of U, from any
given normalized basis vector of the vector space. In particular we can obtain, using only the lowering
operators, the set of basis vectors from the basis vector of highest weight of the vector space. This
result is of importance in applications to many-body problems and in the determination of the Wigner
coefficients of U,. In future papers we plan to determine the lowering and raising operators for the

orthogonal and symplectic groups.

1. INTRODUCTION AND SUMMARY

HE authors have been interested in developing

group theoretical techniques which could be
used for the analysis of a wide class of many-body
problems."'* They have also been concerned with the
determination of the Wigner coefficients of the
unitary groups,®'* coefficients which are presently
of interest both in many-body problems and in
elementary-particle physics.® One of the points of
these programs was to determine the full set of
basis vectors of an irreducible vector space of a
semisimple Lie group. This has led to the introduec-
tion of the group theoretical concept of operators
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4 M. Moshinsky, J. Math. Phys. 4, 1128 (1963).

that lower or raise the irreducible vector spaces of a
semisimple subgroup of a semisimple Lie group
contained in an irreducible vector space of the group.
These lowering (raising) operators shall be poly-
nomial functions of the generators of the group
that, when acting on a basis vector of an irreducible
vector space of the group which is of given weight
with respect to the subgroup, lower (raise) the
weight. Furthermore they shall, when acting on the
basis vector of highest weight of an irreducible
vector space of the subgroup contained in the vector
space of the group, transform it into the basis vector
of highest weight of a lowered (raised) irreducible
vector space of the subgroup.

The lowering operators in particular enable us
to obtain, from the basis vector of highest weight of
the highest irreducible vector space of the subgroup
contained in an irreducible vector space of the
group, the basis vectors of highest weight of all the
other irreducible vector spaces of the subgroup
contained in the vector spaces of the group.

One can choose the weight generators of a semi-
simple Lie group in such a way that the basis vector
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that lower or raise the irreducible vector spaces of a
semisimple subgroup of a semisimple Lie group
contained in an irreducible vector space of the group.
These lowering (raising) operators shall be poly-
nomial functions of the generators of the group
that, when acting on a basis vector of an irreducible
vector space of the group which is of given weight
with respect to the subgroup, lower (raise) the
weight. Furthermore they shall, when acting on the
basis vector of highest weight of an irreducible
vector space of the subgroup contained in the vector
space of the group, transform it into the basis vector
of highest weight of a lowered (raised) irreducible
vector space of the subgroup.

The lowering operators in particular enable us
to obtain, from the basis vector of highest weight of
the highest irreducible vector space of the subgroup
contained in an irreducible vector space of the
group, the basis vectors of highest weight of all the
other irreducible vector spaces of the subgroup
contained in the vector spaces of the group.

One can choose the weight generators of a semi-
simple Lie group in such a way that the basis vector
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of highest weight of an irreducible vector space of
the group is also the basis vector of highest weight
of the highest irreducible vector space of a given
subgroup of the group. So we can then, considering a
chain of subgroups of the group, repeat the preceding
analysis for each link of the chain and thus from the
basis vector of highest weight of an irreducible
vector space of the group obtain the full set of basis
vectors of the vector space.

We now particularize our discussion to the unit-
ary group U, of n dimensions and its canonical sub-
group U,-,. In Sec. II we determine the explicit
expressions (2.27) for the lowering and raising
operators in terms of the generators of U,. In Sec. I1I
we derive recursion relations expressing the lowering
and raising operators of U, in terms of those of
unitary groups of lower dimensions. In Sec. IV we
discuss the matrix elements of the commutators of
the lowering and raising operators with respect to
the basis vectors of an irreducible vector space of U,
These matrix elements are used in Sec. V in the
derivation of the normalization coefficients of the
lowering and raising operators. The normalization
coefficients, which are given in Egs. (5.13), are
fundamental if we want to obtain a normalized basis
vector when applying a lowering or a raising operator
to a given normalized basis vector. In Eq. (5.8) we
obtain any arbitrary normalized basis vector of an
irreducible vector space of U, in the U, D U,-; D

D U, DO U, chain by applying normalized
lowering operators of these groups to the normalized
basis vector of highest weight of the vector space.

The procedure followed here for the determination
of the lowering and raising operators of the unitary
groups is applicable to the determination of the
lowering and raising operators of the orthogonal and
symplectic groups. In future papers we plan to
determine these operators.

II. LOWERING AND RAISING OPERATORS OF U,
1. The Unitary Group U,

Before applying the definition of the lowering and
raising operators to the unitary group U, of n di-
mensions, we first write down a few of the well-known
properties of U,.

The generators of U,, which are denoted by e’
where 1 < u, ¢’ < n, have the Hermiticity properties

e’ = e, @.1)
and fulfill the commutation relations
[ey, sl = ab.et’”’ — 8" et (2.2)

From these commutation relations one obtains as
special cases

VECTOR SPACES 683
(el el =0,
and
(e, el’] = (88 — &¢')es,

from which one sees that the generators can be
divided mto the three sets €& u < #, €, and
Cu <y of lowermg, weight, a,nd raising genera~
tors respectively.®*

An irreducible vector space of U, can be char-
acterized by [A,.] 1 < p < n which is the highest of
the weights of the basis vectors of the vector space.®"*
The basis vector of highest weight is unique even
though U, is not semisimple, due to the homomor-
phism of U, X SU, with U,, where SU, is semi-
simple.®* The A,, which are integers fulfili®

hlu Z hzn 2 ° Z hn—-ln > hnn'

(2.3a)

We define a canonical subgroup of a group as a
subgroup for which equivalent irreducible vector
spaces of the subgroup contained in an arbitrary
irreducible vector space of the group do not appear
more than once.” For U, a canonical subgroup is

Un—l -i— ]
() (k)
nl 2 7

whose generators are €4 1 < u, 4’ < n and where
[Aun-1] 1 < p < n is the highest of the weights of
the basis vectors of an irreducible vector space of
U._. -+ 1 and characterizes the vector space. The
hy n-1, besides satisfying

hln—l 2 h2n—l Z * 2. hn—Zn—l _>_ hn—ln—l;
also fulfill®

(2.3b)

hlm 2 hnn-—l 2 h[H-l ny (2-4)

such that an irreducible vector space [h,,-,] fulfilling
the inequalities (2.4) appears once and only once in
the irreducible vector space [h,,).

A chain of canonical subgroups of U, whose
irreducible vector spaces completely characterize
the basis vectors of an irreducible vector space of
U,, is then the chain”**®

) =(,) ()

[7
UvDUv—l"i_l} 1<”Sn'

8 G. Racah, lecture notes on Grou heor -
troicI?IpyVé'gr}i],Ril:;zestei?gf 3’ Groups an: Q’:L‘antu:z ;:jchtsz:,:s
Oog %ubllslgigogidhic cNeﬂeggxrlh?{m' ngMath Ph
1449 (1963). ’ vs- 4
USSSII{ ;\;[ SCz}glt&aixégOa)md M. L. Zetlin, Doklady Akad. Nauk
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The €4 1 < g, ' < » < n are the generators of U,
and [h,,] 1 < u < v £ n characterizes an irreducible
vector space of U,. The h,, fulfill relations similar
to Eqgs. (2.3) and (2.4) and so we can then, using
the notation of Gelfand and Zetlin,® completely
characterize the normalized basis vectors belonging
to an irreducible vector space [h,,] of U, by

............

) =

..........

hay

We now find the eigenvalues of the unitary in-
variant of the group U,

")
N, =X @,

A=1

1<up<n

The eigenvalue is the same for all the basis vectors
of an irreducible vector space of U, and can thus
be found by acting on the basis vector of highest
weight and so one has

Hence

e’: lhkv) = (N[l - Nu—l) Ihkv) = wl«l th')) (2'5)
where the uth component w, of the weight of |h,,)
is given by

o pu-1
w, = ?_,‘1 B, — xz_l P (2.6)

Defining

one obtains from Eq. (2.6)
h h>, 1<u<n, @7

q>=QM q

e,
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ie. |2) is the basis vector of highest weight of the
irreducible vector space {¢; *** ¢,-.] of U,—;, s0 one
has, using the raising generators of U,_,,

ey Z>= 0, 1<u<ypy<n (28
The basis vector
By vvveevnvnen hn)
ky h, >= By <+ Boes
hl hn—l - >,
h hy
hy

is, as seen from the inequalities (2.4), the basis vector
of highest weight of the highest irreducible vector
space [hy - -+ h,-,] of U,-, contained in the irreduci-
ble vector space [k, --- k] of U,. From Egs. (2.7)
and (2.6) one obtains

hy -+ h hy -+ h
° 1 n 1 n
C. Ry - h,._1> h by - hn_1>> 1<up<n,

80 one sees that it is also the basis vector of highest
weight of the irreducible vector space [h; --- h,)
of U,, and hence one has, using the raising gener-
ators of U,

hy -+ h,
hy o B

2. Definition of the Lowering and Raising Operators

ur
C.

>=0, 1<u<u <.
1

We now define the lowering operator L7 of U, D
U._: 4+ 1 as a polynomial function of the generators
of U, with the following two properties. The first
is that L7, when acting on a basis vector |hy,) of an
irreducible vector space [h,] of U,, which is of
weight w, 1 < ¢ < n given by Eq. (2.6) with respect
to U,-1, lowers the mth component of the weight by
1; i.e.,, L™ gives, when acting on |h,), an arbitrary
linear combination of basis vectors |h{,) of weight
w/, where

w, = w, — 6, 1 <u<n, 2.9)
so that from Eq. (2.6)
Z K, = Z ha — {0 lsv<m (2.10")
A=t A=t 1 m<»v<mn,

and besides,
h;‘n=h)\n; IS)\Sn.
From Eq. (2.9') it then follows
(e, L] k) = (L% — Lhel) |h)
= (w,’, - w#)L: lhkr) = “‘5"5L:' |h)‘,>,
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which is valid for all |A,,) so one obtains
(el L] = —oLL%, (2.11%)

The second property of L7 is that, when acting
on [, the irreducible vector space [g, -+ ¢a.—] of
U.,-, shall be lowered to [¢] : - ¢._,] such that the
lowered weight w!, given by Eq. (2.9') becomes the
highest of the weights of the basis vectors of the
vector space [¢] - -+ ¢/_,], i.e., L7 shall fulfill

1<y m<n.

o By cveeeenns h, >

n ¢ *Om * Gn-1

e h > 1<m<n (212)
0 gn — 1 - Goa

Hence

e, 12 ) = (@13 - L2e) Z> -9

(2.13")

which however does not imply that the commutator
is zero, as the |}) do not constitute a complete set of
basis vectors.

From the commutation relations (2.2) and the
Jacobi identity one can, by induction, easily prove
that if L7 fulfills

1Sﬂ<ﬂ’<n7

(e, L7]

Z>=0, 1< <n—1, (214)

then it also fulfills Eq. (2.13').

From Eq. (2.10') one sees that L7 |h,,) is not
completely determined by the conditions (2.9)
and (2.12") except (apart from an arbitrary factor)
when |h,,) is of the form |2). Clearly therefore Egs.
(2.11’) and (2.13’) are not sufficient to determine L7,
uniquely. It is important though to notice that, in
_ order to generate the full set of basis vectors of an
irreducible vector space of U, from its basis vector
of highest weight, one only needs one possible solu-
tion for the lowering operators. We therefore settle
for a particular solution of Egs. (2.11") and (2.13’).

The raising operator R, is now defined in a com-
pletely similar way, i.e., as its first property B2 gives,
when acting on |h,,) of weight w, 1 < u < n with
respect to U,-,, an arbitrary linear combination of
basis vectors |#f,) of weight w’ where

w, = w, + &, 1<u<n. 2.9')
Hence
- - 0 1<v<m
! = _— 77
éhu éhxy+{1 m<»v<n (2.10")
h;\n = h)m.y 1 S )\ < 'n,
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and
[€f,R.] = 48R, 1L u,m<n. 2.11"")
The second property of B, is that
By evvvennns L Bl oevereinaaean h
R:.n 1 n > 1 n >’
%"'Qm"'@ln—) * q1"'Qm+1“'Qn—l
1< m<n. 2.12")
Hence
(ey’, R Z> =0, 1<u<yp <n, (213"
which is fulfilled if
(@, R ’q’> =0, 1<ax<n—1. (2147
i

In the same way as was indicated for the lowering
operators one sees that Egs. (2.11”) and (2.13"') do
not determine K, uniquely, so again we shall settle
for a particular solution of these equations. With the
help of L7 and R, any other lowering or raising
operator can be formed as products of these.

3. Derivation of the Lowering and Raising Operators

We now derive explicit formulas for the lowering
and raising operators satisfying Eqgs. (2.11) and
(2.14), starting with the lowering operators.

The most general polynomial function L7 of the
generators which satisfies Eq. (2.11) is a linear
combination of products of the form eX.e...
eiiz: el which, as seen from the commutation
relations (2.2), have all the indices u 5 m, n paired,
while the index m appears once more above than
below and hence the index n once more below than
above. Using the commutation relations we can then
write L7 as

n—2 n—1
m m k1 Kp—1 pbp
Lﬂ - E Z emeh e e/-tp C.
P=0 pp.Bp—1,crc,83,81=1

1< m<n, mFE p, An

2.15)

where the term corresponding to p = 0 is, by defini-
tion, the term not containing any u;, i.e., the term
€79, and where D,,....,.. is a function of closed
cycles of the generators, i.e.,

X 337"#1#- tetHp—1lpny

for 1 < ¢ <p, and p; # p; for 7 j,

= ®mﬂx"‘#yﬂ(e;:e;: et e;:—‘e;:)l
¢>1, 1<n<n

Doy v eupn

(2.16)

If in a given term of Eq. (2.15) the product
enen .- C2@h? contains a raising generator of
Un-yy i, o < moor piuy < g, it could, using the
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commutation relations (2.2), be moved to the right,
and so when acting on [}) in Eq. (2.12') it would,
according to Eq. (2.8), give zero. Therefore, if we
have a solution of Eqgs. (2.11°) and (2.12’) of the form
(2.15), we can construct another solution of the form

n-m=—1 n—-1

2 )

P=0  ppOpp-a1> e >pad>py=m+l

1 <m<n,

m m o Bp—3 ok
Ln = emen: e e#: ‘G

2.17)

in which the product does not contain any raising
generators of U,—,. This reflects the nonuniqueness
of the lowering operators mentioned in the previous
subsection and for the sake of simplicity we restrict
ourselves to lowering operators of the form (2.17),
which then are equivalent to Eq. (2.15) with respect
to Eq. (2.12'), but however not with respect to
Eq. (2.9).

We now need to apply the condition (2.14’) to
L% of the form (2.17) with D,,,....;,n of the form
(2.16) in order to obtain the final formula for L7,
Let us however first define some useful operators

& =€, — e‘;: +u = (2.18)

which, as seen from Eqs. (2.18), (2.1), and (2.2),
have the properties

x j)ml‘ll‘l *ttpp—1Hpn)y

8w = — Buury (2.19)
Euwrr T+ B = 8y (2.20)
Buwr = Buury (2.21)

and
[8ury €00 ] = {80 — &) — (&0 — & el
(2.22)

From Egs. (2.18) and (2.5) one obtains the eigen-
values of the §,,.
Euwr |h)\v> = (wu - Wy e I“') |hM>1

1 <uw <, (2.23)

where w, and w,. are given by Eq. (2.6). In the special
case when |h,,) is of the form [})and 1 < p, v/ < n
one obtains from Egs. (2.18) and (2.7)

Eun ’q‘> = G Z> 1<mu <n,  229)
where
Qo = ¢ — @ T+ 1 — 1y
from which follows
Qorn = — Qs (2.25)

and
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Q' + Qurw = Qupry
and besides, from Eq. (2.3b)

’

u (2.26)

AV

>
Qow 2 0; I

From Eq. (2.23) we see that with respect to the
basis vectors |h,,) the operator &,,. is represented by
a diagonal matrix some of whose diagonal elements
can be zero, i.e., the matrix is not nonsingular.
However for the particular basis vectors |*) the
eigenvalues g,,- of &,,. for 1 < u, u’ <mn, p =% u’ are,
according to Eq. (2.26), always different from zero.

In Appendix A it is then shown [see Eq. (A1)] that

n—1

2

(n—m—l
=0 pp>pp—1>cc>p>p=m+l

o n—1
x I s;:.-) II &..,

ie] p=m+1

m m ok Kp—1 by
Lﬂ = el‘xeﬂl e#p eﬂ

1< m<n, (2.27a’%)
which is homogeneous of degree n — m in the opera-
tors €4 and &,,, indeed satisfies Eq. (2.14'), so we
now have a simple solution for the lowering opera-

tors. In Eq. (2.27a") we have for m = n — 1 used
the definition [see Eq. (A2)]

n—1

II &.. =1, (2.28")

w=n
and we from here on define in a similar way all
products that have the same range for the dummy
index.
One sees that L7, written in the form
n-m=-1

e > 5 (H s;,i,-)

pmmtl P=0 ppDpp—1>ecSug>uy=m+1l gm=1

X €res™ - CLeL,

=

1< m<n, (2.27b")

satisfies Eq. (2.11’). It can also be proven, in a way
similar to the one which was used in the appendix
for L, given by Eq. (2.27a’), that L7 given by Eq.
(2.270') fulfilis Eq. (2.14') and thus also is a lowering
operator. In Sec. III we show that this operator is,
in fact, equal to the one given by Eq. (2.274'),
which also is the reason for not distinguishing typo-
grafically between them. Equation (2.27b’) can now
be considered as a useful alternative way of writing
our lowering operator.

Note that the appearance of the inverse of the
operators &,,. in Eqgs. (2.27a’) and (2.27b’) is just a
matter of notation, as each factor in H’,?_, & has a
counterpart in []?21,, ., that cancels it.

The derivation of the raising operators follows
the same lines as that of the lowering operators and
one obtains
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m—1 m—1
R, = (Z 2 eren - ene,
=0 ppDup—1>ec>pg>ui~l
P me]
x I s:.,‘“) & 1<m<n, (227
i=1 H=l

or

m—1
R, =11 s..
p=1

m—1 m=1 ( P
-1
2 2 II &
Bi

p=0 ppDpp—1D>see>pe>uy=l i=1
n f 2% Bp—1mbp
X eu;em o el‘n em’

1<m<n, (2.27b"")

which are homogeneous of degree m in the operators
€. and &,,, and where for m = 1

0
Il &m=1.

u=l

(2.28"")

From here on we define in a similar way to (2.28")
all products that have the same range for the dummy
index.

As both our lowering and raising operators are
defined, according to Eq. (2.12), by their effect on
the basis vectors of highest weight with respect to
U,_., we cannot expect that the explicit expressions
for them, (2.27’) and (2.27"'), should be symmetrical,
e.g., apart from the factors §,,., the L7 are expressed
exclusively in terms of lowering generators, while
the R are expressed in terms of lowering generators
and a single raising generator €} . This lack of
symmetry is also reflected by the fact that

L™ « R, (2.29)

which can be seen from Eqs. (2.27) by using Egs.
(2.1) and (2.21).

Special Cases

Using the general formulas (2.27) for the lowering
and raising operators for n = 2, 3, and 4 we obtain
the explicit expressions

U,:
Ly =¢e;, R}=¢l
Us:
3 = 8 + @0 = §,C; + C3C;,
3 = Cs;
1=6,
3 = Ci8xn + @30 = 8x6; + CiC:.
U,:
L = @i€,85 + C3CL8; + C:C8, + CiCiC)

= 8,85C1 + 8€iC + &,Cie; + eieze;,

687

LI = @38, + CiC} = &€ + Ciei,

L = ¢

R = @,

R; = €38, + @€ = §,C; + €IC,,

R; = @383, 8 + C3C1 8 + €3C3 &, + €3CC)

€31 852C5 + 8,C1C; + 8,C3€; + CieCs.

III. RECURSION RELATIONS

We develop here some useful recursion relations
for the lowering and raising operators. Performing
the summation over u, in the formulas (2.27') for
L7 in two steps, first summing up to »' — 1 where
m < n' < nand then summing from n’ up ton — 1,
one readily obtains from Eq. (2.27a’)

n—1

II

A=p+1

-1
Ly = 2 Le
p=n'

-1
& + [€3, L2] II &m,

1< m<n <n, 3.1a%)

and from Eq. (2.27b")

n—1 n—1
Ly = Z ( H 8mx)e.‘iel"

p=n’ mu4l

n-1
H Sm)\[e:’) L:'])

A=n'’

1<m<n <n, (3.1v%)

where in both cases

Ln=1. 3.27)

Equations (3.1') are seen to be recursion relations
expressing the lowering operators of U, in terms of
those of unitary subgroups of U,. From Eqgs. (3.1a")
and (3.1b’) one obtains in both cases forn’ = n — 1

L:l = e:_lL:'—l 8mn-—l - gmu—lLrT—le:-ls

1<m<n-—1. (3.3

Since from both Eq. (2.27a’) and (2.27b) we get the
saIme expression

m m
m+1l em+1}

it follows from Eq. (3.3") by induction that L™ given
by Eq. (2.27a’) is equal to L, given by Eq. (2.27b),
which proves our statement in Sec. II3. As another
special case of Egs. (3.1') one obtains for n' = m

n—1

n—1

Ly = Y Lues XIIl E&my, 1< m<n, (3.42")
p=m ~ut

and
n—1 n—1

L= (xﬂl Smx)e::L’:, 1<m<n  (34b)
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From Eqgs. (2.27”) for R,: one obtains in a similar
way the recursion relations

Ry, = ZR“@ II & + (R, €] II Emis
k=1 =1
1 <n < m, (3.1a"")
or
n' -1 n' ,
R, = (H 8,,.x)e:an + I &mlE%, €,
u=1 A=1 A=1
1<n <m, (3.1b"")
where
m-—1 m—1 ,
= ( ener - enel
P=0 BpDpp—1> e Dpa>pi=n'+1
X mﬂl) H 8mp; 1 _<__ n’ < m (353:)
=1 uw=n’+1
or
, m—1 m—1 m—1 »
R::z = Smu E (H 87"#-)
u=n'+1 =0 up>pp—1>*ce>ug>ur=n’+1 i=1
X @rer ...ekel, 1<n <m, (3.5b)
and
R, =1 3.2’
From Eqgs. (3.1"") one obtains for n’ = 1
R: = &.R.C; — CRLE,.,, 1 <m<n, (3.3
and forn’ = m
m u—1
= YRl 6, 1<m<n, (34a")
k=1 A=1
and
1
-> (H s) CR:, 1<m<n  (34b")
u=1 A=1

Notice that L} m < p < n, which appears in the
recursion relations for L, is a lowering operator of
U,, while R 1 < u < m is not a raising operator of
U, and in fact is, apart from the &,,., expressed ex-
clusively in terms of lowering generators. Yet we
denote these operators by the same letter as that of
the raising operators R% m < u of U, as there is no
possibility of confusion, since for the operators de-
fined in Eqs. (3.5), 1 < u < m while for the raising
operators of U,, m < u. This again reflects the lack
of symmetry between the lowering and the raising
operators.

IV. MATRIX ELEMENTS OF THE COMMUTATORS
OF THE LOWERING AND RAISING OPERATORS

In this section, we derive some properties of the
lowering and raising operators which are of impor-
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tance when we want to obtain a given normalized
basis vector from another given normalized basis
vector.

From Eq. (2.1) one sees that the lowering genera-
tors in Eq. (2.272") when acting on (}| act as raising
generators, and hence from Eq. (2.8) give zero if
they belong to U,_,; so we have, also using the

definition (3.2%),
.
<h] I = (L;",* h>) ~ o <h, 1<m<n <n.
q q q
4.1%)

Now using Eqgs. (3.47), (4.1), (2.22), and (2.24) we
obtain

n-1
<|L’"—< ELM@MH Em = HSM
p=m A=p+l A=m+1
= H(qm“+1)<‘ eh 1< m<n. 4.2")
p=m+1

We may note that even though, by definition [see
Eq. (2.12')],

o | S k. > o e h, >
"l gt Qs ' gn—1 " gu
4.3)
we have that
By oovvennes h, n By covvevnnnens R,
<q1~'q © Gn- L"¢C<q1-- Gnt 1 gual’
4.4")

the reason for this apparent paradox being that the
|+) do not constitute a complete set of basis vectors
so that (¢|@ 7 contains basis vectors which are not
of the form (!|. Equation (4.4’) also reflects Eq.
(2.29).

Using Eq. (4.2') twice we obtain

= Bl o
Ly = II (gm+ DA | €NL
q u=m+1 q
n—1 h , n—1
= II (qm"+1)< Lyer = II (gm+1
p=m+1 q p=m+1
n—1 h ,
X II (gws erer, 1<m<m <n.
w=m’+1

(4.5a)

In a similar but slightly more complicated way,
using Eq. (4.2) and the explicit formula (2.27a’)
for L7, one also obtains

ﬁ (qrn’u + 1)

p=m'+1

n—l
< ‘ LyLy = II (gm+ 1)
p=m+1

X <q] ener’, 1< m<m <n. (4.5b)
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We now obtain from Egs. (4.5a) and (4.5b), using
the abbreviated notation

S Qe Qn—1>’

1< m<m <n,
that
(Gn — 1 qu — 1| L% L] |gm @m) = 0. (4.6")

For the operators defined in Eq. (3.5) we have
correspondingly

G

from which follows for the raising operators

R, =&, <’;‘, o<n <m<mn, (417

h . m~1 h n '
Rm = H (qmu - 1) em, (42 )
q =1 q
<h1 ......... R, B « <h1 ............. h. ’
G G Gue G m— 1 g
(4.4
and
(gn + 1 g + 1| [R7, BT |gm @ur) = 0,
1< m<m <n. (4.6"")

Let us now consider the matrix elements of the
commutator of a lowering with a raising operator.

Using Eqgs. (4.2"), (3.4a’), and (4.1’), we obtain
h ) m—1 h n—1 , n—1

<q RLLY = I (gmi— 1)<q en 2 Lyer IT &un
Be=1 p=m’ Amu+l

m—1 n—-1 h .
= I (qm“ - 1) H (Qm'u + 1)< ‘ emen )
u=1 p=m'+1 q

1< m<m <n, 4.7)

and, using Eqgs. (4.2"), (3.42”"), and (4.1”"), we obtain
similarly

h I m—1 n—1
<q LT R, = IJI (gmx — 1) =H+1 (gmw + 1)

eren, 1<m<m <n. 4.7

x ("

q

We now obtain from Egs. (4.7"), (4.7), (2.2), and
(2.8),

(@n + 1 gu — 1] [B%, L7'] @ qm?)

m—1 n—1
= H Qmu H Qs
u=

1 p=m’'+1

X <Qm +1 qm’ — ll [e:., e:"] lqm qm’>

m—1 n—1
= quu H qm’u

u=1 p=m'’+1
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X (gn+ 1 gu — 1| Cn |gn gm) =0,

1< m<m <n. (4.8a)

In a similar but slightly more complicated way,
using the explicit formulas (2.27) for L7, and RI,.,
one obtains

(qm —1¢n + 1] [R:»’, L':] lqm qnﬂ) =0,

1< m<m <n. (4.8b)
Since from Eq. (4.3)
(L% L2 |Gn @n) = |gm — 1 g — 1),
1< m<m <n,
it follows from Eq. (4.6’) that
(L, L] Z> —0, 1<m<m<n (49)

In a similar way one obtains from Eqs. (4.6”),
(4.8a), and (4.8b)

(RS, RO Z> =0, 1<m<m <n (497
Ry, L] Z> =0, 1<m<m<n (4108)
and

[Bn., 17 Z> 0, 1<m<m <n  (410b)

In Sec. V we show however that, in general [see
(5.15)],

[Bn, L7

Z> # 0, 1<m<n. (4.11)

It might be mentioned that a stronger property
than Eqgs. (4.9) seems to hold, namely

(L%, L] = [R%, R.] = 0, 1<m<m <n,

but a general proof of this has as yet not been found.

V. NORMALIZATION COEFFICIENTS

In the previous sections we were only interested
in lowering and raising operators that would take
us from one basis vector to another one, without
requiring that the last basis vector should be nor-
malized if the first one was normalized. In the
applications it is of course very convenient to deal
with normalized basis vectors and so we derive in
this section the normalization coefficients of the
lowering and raising operators when acting on |*).

The normalization coefficients, and hence also the
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normalized lowering operators, are functions of
hy, <+, h,and ¢, -+ , ¢.-1 and are denoted by

e Qo e Gnet
Nlhy covveeenennn. h,
A Ry
= Nuloila, =N, 1< m<n,
and
PR Qo o Goer
Llhy veerveerrenns R,
G Qm— 1 gy
= el = Loy, 1<m<mn,

respectively, where we use the abbreviated notation
when there is no possibility of confusion. The nor-
malized lowering operators can then be written as

Lom-1 = (NZ;"-l)“L'Z'., (5.1)
and fulfill by definition

- (Vo)L By oovrnenns h,
/O

(5.2")

From Eqgs. (5.2') and (4.2') we then have for the
normalization coefficients

am

am—1

_ <h1 ............. k., I By eovnerees h, >
ql o oo qm [— 1 PR q"_l ql qm . q"_l
=1 | S R,

—,.-Iqu qm"<Q1 qm—l R/ A

By vveneeens h, > ,

ey . (5.3")

X ql e qm “ .. Qn—l

For the normalization coefficients of the raising
operators and the normalized raising operators we

have similarly
ql ----- qm ----- qﬂ—l
Nlhy «ooeereenrens h,
g - Qs + 1 ct Quet
= NG oo = No, 1<m<mn,

and
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ql ----- qﬂl ----- Qn—l
®RlAy oot h,
@ gm L J

— m(h"‘ﬂm"‘dn—: pa—
- g1 amtlecegn—y =

1<m<n.

am
dm+1y

For the normalized raising operators we then have

Remsr = (Nen)) 'R0, (5.1")
fulfilling
By vvvvnnnnnnns h, >=(R"'” By +ooeenns h, >
¢ Gmtl o g oot 'R [ / A

_ | S A
= (Nin. ) 'Ry | " > 5.2"
( 1 ql e qm o Q'n—l ’ ( )

and for the normalization coefficients we have

am
am+1

_ <h1 ............. k. - By ooveenn h, >
G gmt L gl TG g Qe
m—1
By oovvevnnennns h,
- uI-Il qm“ <Qx Qm + 1 e q't—l

(5.3

From Egs. (5.3') and (5.3”) we obtain, using Egs.
(2.1), (2.25), and (2.26), the symmetry relation of
the normalization coeflicients of the raising operators
with those of the lowering operators

m—1 n-1
Nonsi = (I;Il Omu H (qmu + 1))Ng:+l

- (11 g.n

B=1 B=m

n—1

L (gms + 1))NZ:“. (5.4)

We are now able to obtain with the help of the
operators L7 and R, any normalized basis vector
5. from any given normalized basis vector {*). De-
noting the general normalization coefficients by

01 Qnr
N|hy oo h, | =NZU0 o,
g1 g
we have
q} e q,—l> = (N<11"'?ﬂn-—;') I(L:z) e

. hy -+ h
Rﬂ_ Qn-—1 dn—2 { 1 n > .
X ( l) QI toc qn—l ! (5 5)

where we have considered an example with
a1 < g, @1 > Ga1- In general, when ¢/ < ¢.,,
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one has (L™ and when ¢/ > g. one has
{R2)™"~*="%= in the product of the operators acting
on ) in Eq. (5.5).

Due to Egs. {4.9) and (4.10) the general normaliza~
tion coefficients in Eq. (5.5) is independent of the
order of the lowering and raising operators, and so
if we consider some value ¢}, where due to Eq. (4.11)
eitherg; < ¢l S gaorgli 2 ¢l 2 g1 Sm < m,
we readily obtain for the normalization coefficients

N = Nl " Nalli . (5.6)
From Eq. (5.5) follows specially
%3“ I R e e
G vt Guer
x Fagweli by e
sy i 3

s0 we can now obiain any given normalized basis
vector |h,,) of an irreducible vector space [h,.] of U,
from its normalized basis veetor of highest weight

’klu vt hms >
hln e hw—ln
as
Fiig <vvrevrneenn k“"f
&1 a1 77 !zia-z w—1
..........
}8}2 kﬁ?
hy l
~3
}ﬁy " *&vwzr
"
K
= 1INk, - b (L
i
Bipey * ¢ Byy oy

R

H (L:*l}3pm- B me

A

2
X I @p»> .-

Bl

Frag » oo vt P
ok }&m T ffs-m
4 § 174 ol BEETEREEE > 5.8
e P Fizn
kb&

where it should be noted that the lowering operators
belonging to distinet subgroups of U, are to be
maintained in the order given above.

The explicit formulas for the normalization coeffi-
cients can be obtained in two different ways. A self-
contained, though somewhat lengthy, derivation has
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been obtained by the authors,” but is not given in
this paper. We give here a simpler, though not self-
contained, derivation using the formulas for the
matrix elements of the generators of U, obtained
by Gelfand and Zetlin® and later rederived by other
authors,”’

With the phase convention

(] €7 R} 2 0,

the matrix elements of €% are given by’

5.9

8,7.9

...........................

........

.......................

X ey

........

w1

= xH S(hes = Do nen-s + DI7Y

bl

-2

H ki%*xl“i 2&h=2
x=3

Ty

H 53'!;”13\‘-1‘:3-1

k=3
LEE 3 Y

b
II (Pareirmr — 1)
X
H {khw—a}x—hkal - 1)

Kl
L33 3 T

x 11

Kwmss

H i ..<.. gk f:.. }‘r (5*13}

where

By pree = ar = Rpryr b g -,
and

S(x) = {}_‘1 for z ;“‘; 0.

From Egs. (65.3) and {5.10) one then obtains for
normalization coeflicienis of the lowering operators

¢J. G, Nagel and M. Moshinsky, Rev. Mexicana Fis.
{to be published).
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ql ----- qm ----- qﬂ—l
N hl ............. hn
G Qm — 1 * Qumi

= [(FHM Qs I=Il (gum + 1))
XLym—%+m—n+n

X ﬁ (qrn_

p=metl
n=1
=1 II /e
p=m+1

n ]
x T~ htu—m-1].

I
':I:I: o 1))
5.11")

From Eq. (5.11’) one now sees that the phase
convention for the normalization coefficients of the
lowering operators equivalent to the phase conven-
tion (5.9) is

ql ----- qm ----- qﬂ—l
Nihy covoevevnenns h, | >0 (5.12)
91 P qm —_— 1 “an Qn—l

From the symmetry relation (5.4) one sees however,
that this phase convention does not imply that the
normalization coefficients of the raising operators are
also all positive.

Using Eq. (5.6) successively and Eq. (5.11") one
now obtains the general normalization coefficients
of the lowering operators as

N

Q1 v Qn—-l . q{ th q:n—l q"n Qm+1 cre qn—l
Nlhy oo ohy | = JIN|Byooveeeeeiiennes h,
me1
gl - s Q1 Qo1 Gm Gmr1 " Gnr )
Q1 : q:n-l g Qua . Qn—l7
n—1 am
= II II Ny ooeeeeeeiieeeees h.
m=1 g¢m’ '=am’+1
q{ ce q:n—l qin’ —1Gms1 *** Qe

- [ T @ F+u—N! 7 tbh—gi+u—N!
e (@ — o+ — N s = g+ —M!

o (qx——hu+u—>\-—1)!]% o
% IIl(q;\—hu+#—)\_1)! y 6<4q, (.13)

B>A=

from which one, as a special case, obtains the norma-
lization coefficients appearing in Eq. (5.7),
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By v hae
=g +e—N!
N|h, -+ h, =|: (hn q- [
' MZI7\I=1 (B — @+ u— N
ql ... qﬂ_l

(m—m+u—x—nT 5.14)

aSA=1 (Q)\_h,.‘l‘l-t— A — 1)!

For the normalization coefficients of the raising

operators one obtains from the symmetry relation
(5.4) and Eq. (5.11")

ql ----- qm lllll q"_l
N hl ............. hn
¢ Qm + 1--- Q1
m—1 n—1
= <_)m_1[<I_II Qum =II_F (qmu + 1))

XH(hM_q"-_l_m—I‘)

p=1

X fI (gm —

p=m+1

- ‘[ (H s
X ﬁ(qm -

b=1

e
hu+ﬂ_m):|

I (et 1)

p=m+1

3
hy 4+ p — m)] ) (5.11"")

from which one then obtains in the same way as for
the lowering operators

Q1 * " Gnr .
Nlh -k = (_)El (41 (au’ =aw)
qi - G

X[ji(%—%+u—01*‘mr-%+u—mz
p>A=l (Qx - Qu+l"' - >‘)' pzA=1 (h)\ - Qu+l‘ - )‘)!

(q)"_hu'l"“—)"—l)' : I}
L =gl on] g2 Gayy)

X
From Egs. (5.11") and (5.11”") one obtains

qu lNGml (_)m_lll(hu_qm—{_m_ﬂ"‘l)

X II @n—Pht+p—m=1)

p=m+1

#=1

hy +u—m— 1),
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It then follows that 80 one sees that in general
Nt Ninsy = Nono Noo* N ' Ni # N U Nens, (5.15)
I which proves Eq. (4.11).
= = gutm— ) proves Bq. (4.11)
s=t Special Cases
X Il (gn— b4 u—m) As special cases for n = 2 and 3 one obtains from
u=mtl Egs. (5.11) the normalized lowering and raising
e - _ _ operators in Egs. (5.1), and from Eq. (5.14) the
- g (@n = b+ p = m), normalized basis vector |A,,) in Eq. (5.8),
U,:
731
£1h, hy| = [(h1 - q + 1)(Q1 - hz)]-%L;,
\ @1 — 1
(
1
®|h, hy| = [(hx — @)@ — ha + 1)]_§R?;
( ¢1 +1
ha h2> — [ (Q1 — hy)! :r (Ll)h,—-q. h, h2>
¢ (hy — q)! (By — hy)! 2 h, /°
U,:
q1 Q2
Llhy hy k| = [(g1 — ¢ + Db — ¢ + D@y — ha)(qy — b + 1)]_%14;7
Lgn— 1 ¢ )
e (h q‘hq2 Bl = [ (g — g2 + 2) ir I2-
! 2 ® (hy — g: + 2)(hy — q: + 1)(Q2 - ha) 3
¢ — 1}
’ g1 4 ‘ (. — ]
- @ — ¢+ 2 :' 53
N [(hl 0@ ~ s+ Dgs — e+ 9]
q1 Q2
Rlhy Ry hyl = —[(¢x — ¢ + Dty — g2 + Db, — g2)(g: — hy + 1)]_*133;
L 1 Q2 + 1)
P s s (e = @) (g — @ + (g1 = k) (g0 — by + 1)! ho)! '
Q1Q2>=|: 1 q2): \qv g2 ) 2): (Gh s + 1) (gs — )l
r (=) — @) (e — @ + DI (he — @)1 (B — ho)! (hy — by + 1)1 (hy — h3)!
hy ho by
X (L;)ql_“(L;)h‘—h(Lg)h’_h h1 h2 >.
hy

APPENDIX A: PROOF OF THE FORMULA FOR THE LOWERING OPERATORS
We prove here that L7 written in the form

n-m~1 n—1 » n—1
Ly = ( 2 2 erem - eer IT &:L) II & 1<m<n (A1
=0 pp>pp—1>*>pa>=m+l i=1 #=m+1
where
n—1
II & =1, (A2)
w=n

satisfies Eq. (2.14")
(@, L7 | =0, 1<A<n-—-1 (A3)



694 J. G. NAGEL AND M. MOSHINSKY

We shall treat the three cases A > m, A = m and  @}*' with the products of the &,, and then with those
terms in L7, where the products € el -+ - €2 et
either contain X + 1 or A, or contain both N and

m<IA<n—L A 4+ 1, or do not contain neither A nor A + 1. Using

In calculating the commutator of @*' with L” the commutation relations (2.2) and (2.22) and
given by (A1) we consider first the commutations of Eqs. (2.8), (2.19), (2.20), and (2.18), one obtains

A < m separately.

h n—m-~1 n-1 s - 4 1 n—1 h
q = E Z (‘3,‘, * G (‘3 ] H Sm,“- H gmx q

p=0 pp>cca>uimm+l =1 k=m+1

(@, L7

A=m—1 n—A—2+14 n—1 A-1 a1 \ n—1
+ +1
+ 2 2 2 > @, e - enel el [T et I 6m
=0 D=i  Pp>ere>ud 41=A+2  pi>ceeSup=mtl i=1 x-r;o-b:
K A+
+ [GHI, RN Y m 42 " e“,] II 8,,,“ H Ens
x=m+1
(222

»
q
(€n - CYEML oot Cl (8o — Epas)
)
q

A—m—1 p—A—24+7¢ n—1 A—1 \
= { > 2 > > eneerer e ]I s,,.w}

i=0 p=1 P> oo i +1=A+2 Ri>cce>p =m+l [

Mo
q

n—1
+ [&*, er - e e, et - e H & 11 st

i=]1 Kk=m+1
K#A,A+1

{)\—m—l n=A=24+1 n—1 A-1

i=0 p=i Bp> D ui 41mA+2  pi>cce>p=mtl

n—1

+ e - e e — e, - em H sw} H, Eme
K=m+
(12993

n—1
X II &ente@—eaii+1
kmm+1
#AAF1

m=\<n-—1

In this case one obtains in a similar way

n—m—1 n—1
= Z Z G:: * e“p[e,nﬂ: H mm H 8,,,,,]

p=0 pp>cre>umm+l i=1 p=m+1

)

h
e::+l, L'::
[ 1

n—-m—2 n—1

+ Y 3 ([e’”“ s e [Tea 01 s

p=0 pp>cce>u1=m+2 p=m+l

)

n-m—2 n—1
= { 2 > (=€t e @ By + (€ — €RIDELT - C) II smm} II Eme

+rexn, ennert - e IT & 11 8)

i=1 p=m+2

)

- My
p=0 pp>cee>ui=m+2 pem+2

n-m—2 n—1 n—1
= { > > ettt .. er H smm} IT &l(—8mmnn +C@n—e€nii+ 1) ‘q> =

Pp=0 pp>cc->p1=m+2 ne=m+2
1<A<n

In this case we have

o

2R geeer[an e 1T s

p=0 pp>ece>m=m+l] p=m+1

+ m h
[, L7 .

so we have now finally proven that L7 of the form (A1) satisfies Eq. (A3).
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A new definition is given for the “ideal random function” (derivative of the Wiener function), which
separates out infinite factors by fullest exploitation of the possibilities of the Dirac delta function. By
allowing all integrals to be written formally as sums, this facilitates the definition and manipulation
of the Wiener-Hermite functionals, especially for vector random processes of multiple argument. Ex-
pansion of a random function in Wiener—Hermite functionals is discussed. An expression is derived
for the expectation value of the product of any number of Wiener-Hermite functionals; this is all that
is needed in principle to obtain full statistical information from the Wiener-Hermite functional ex-
pansion of a random function. The method is illustrated by the calculation of the first correction to
the flatness factor (measure of Gaussianity) of a nearly-Gaussian random function.

I. INTRODUCTION

N certain physical problems, one may wish to
analyze a random function f in terms of its

deviation from some Gaussian function. Toward
this end, Cameron and Martin' and Wiener’ have
given two formulations of the theory of Wiener—
Hermite functionals; when f is expanded in series
of such functionals, the first term is Gaussian, and
the higher terms are in a sense successively further
and further removed from Gaussianity.

Such an expansion is distinet in principle from
the well-known Gram—Charlier or Edgworth series.
In the latter, the probability distribution funection
is expanded in a series whose first term is a Gaussian
function; in the present case, the distributed random
variable, i.e., the argument of the distribution func-
tion, is expanded instead. This latter procedure might
be expected to be useful when the mathematical
conditions which define the problem (e.g., a dif-
ferential equation) apply to the distributed variable
rather than to the distribution function. If an
expansion of the random function is then used, the
conditions expressed by the differential equation are
transformed into conditions on the “coefficients”

* Work of T. I. (in full) and A. S. (in part) supported b
U. 8. Air Force Office of Scientific Research; of W. C. My
(in part) by the Office of Naval Research.
T Present address: Kwansei Gakuin University, Nishi-
nomiya, Japan.
(19;’?)' H. Cameron and W. T. Martin, Ann. Math. 48, 385
2 N. Wiener, Nonlinear Problems in Random Theory (Tech,
Press, Cambridge, Massachusetts and John Wiley & Sons,
Inc., New York, 1958).
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(actually integral kernels) of the functional expan-
sion.

As an application of such an expression, one may
have in mind a situation in which the argument B
is of multiple nature, e.g., a vector; moreover, the
funection f may itself be a vector, which is equivalent
to a scalar function with a discrete argument (for
the vector index of f) incorporated into E. The
present paper is in fact intended for such a purpose,
since it arose from the necessity of furnishing a
mathematical background for certain papers on
turbulence theory® by the present authors. The
formulas needed in this ecase are considerably more
complicated in detail than those of the single argu-
ment developed in Refs. 1 and 2, even though
similar in principle. Hence some simplifying scheme
is desirable. In this paper we put forth first, by way
of preparation, such a simplifying scheme: A new
“gymbolic calculus” of the ideal random function
(the derivative of the Wiener function). With its
aid we then define a simple set of Hermite func-
tionals, and develop a method of evaluating expecta-
tion values of products of such functionals. The
work is done in terms of vector, or multiple, argu-
ment R, except for an introductory discussion of
the case of a single, scalar argument. We conclude
with an illustrative problem, the computation of the
“flatness factor” (deviation from Gaussianity) due
to the second and third terms of an Hermite func-
tional expansion.

2'W. C. Meecham and A. Siegel, Phys. Fluids 7, 1178
(1964); A. Siegel, T. Imamura, and W. C. Meecham, J. Math.
Phys. 6, 707 (1964). A preliminary report by Siegel, Imamura,
and Meecham appeared in Phys. Fluids 6, 1519 (1963).
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II. DEFINITION OF THE IDEAL RANDOM
FUNCTION

A, Single Argument

As the basis for constructing our series, we use
the “ideal random function” a{z) of a secalar vari-
able z. This improper function may be defined in
various ways: (a) as the derivative of Wiener's
random funection*™® X(z), or (b) by the moment
equations

{a(z)) = 0,
{a(z)alz,)) = 8(x, —

plus further moment equations expressing the condi-
tion that ¢ be Gaussian.” We propose here still
another definition:

a(z) = £@)[5(0)]*,

where §(0) is the Dirac delta function of zero
argument, and £(z) is in turn defined as follows:
for any fixed = it is a Gaussian random variable
having zero mean and unit variance, and it is
independent of £(z’) whenever 2’ # z. This com-~
pletes the definition of a(z). The extraction of the
factor [6(0))} has made it possible to express the
properties of a(z) in terms of those of the random
variable £(z), which is a harmless Gaussian random
variable, ie., (¢(z)) = 0, (£'@)) = 1, ¢"(x)) = 0
(n odd), {£"(x)) = (m — 1)!! (m even).

The equivalence of this to the above definitions
(a) and (b) may be shown with the use of the
identity

@.1)

x2) 3 (2 ~2)

2.3)

5(‘”1 - x2) = 5,,,,5(0), (24)

where 8, .., is the Kronecker delta, equal to 1 when
Zy = &,, 10 zero otherwise. This identity is proved
in the Appendix [Eq. (A6)].

The equivalence to Definition (b) follows with
the use of Eq. (2.4) from

(Ex)e@s)) = 8epia,

which is a direct consequence of the definition of
£(x); Egs. (2.1) and (2.2) and all the higher moment
equations entailed by the Gaussianity of a(f) are
easily derived in this way.

The equivalence to Wiener’s definition (a) is
demonstrated by the fact that the integral of a(z),

2.5)

4 N. Wiener, J. Math. and Phys. 2, 131 (1923).

5 N. Wiener, Acta Math. 55, 117 (1930), Sec. 13.

s R. E. A. C. Paley and N. Wiener, Fourter Transforms in
the Complex Domain (American Mathematical Society, New
York, 1934), Chap. 9.

7 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945), Sec. 9a.
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X@) = [ @) d (2.6)
0

has all the properties of the Wiener function: It is

Gaussian because it is the sum of the Gaussian

random variables a(x) or £(z); it has zero mean,

if we interchange the order of integration with the

operation of taking the mean,

x@) = [ @@yar =0 @
it has variance z:
(X(2)) = f: j: {a(z)alz'")) dx' dx'’
= f f s — o) de’ de'’ = z;  (2.8)

and its inerement X(z,) — X(z,) over an interval
(1, x2) is independent of the increment over any
interval not overlapping (z,, z.), since the variables
a(z) summed in

X(z,) — X{zy) = f alx) dx 2.9
are independent of those which contribute to the
increment over any nonoverlapping interval.

The conceptual usefulness of the function £ lies
in that with its aid the formalism of the ideal random
function of a continuous variable is reduced to that
of a function of a discrete variable, equivalent to
a set of independent discrete Gaussian variables;
the latter being a much more elementary concept
than that of the Wiener function. By making the
formalisms of diserete and continuous variables
equivalent, it does for the Wiener process something
quite analogous to what the Dirac s-function method
does for quantum mechanies in breaking down the
formal distinction between the funetion-space trans-
formation theory of operators having confinuous
and those having discrete eigenvalue specta.

In order to bring out the full utility of this scheme,
it is desirable to make even more explicit than is
usually done the way in which the &-function
calculus depends on the interpretation of integrals
as sums. This is done in the Appendix.

Besides reducing a mathematically sophisticated
concept formally to a more elementary one, the
reduction of integrals to sums is extremely useful
expositionally where the Wiener process is a vector
rather than a scalar function. In such a case it may
be said to depend on a diserete index as well as on
a continuous variable, and in the rigorous theory
the resulting combination of sums and integrals in
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many common formulas becomes very complicated
in appearance. Our formalism allows us to write such
sums-and-integrals simply as sums, and to combine
discrete and continuous variables into one multiple
variable. This results in considerable simplification
of notation, relatively, in a field where the formalism
tends to become complicated. We shall see how this
works out in Sec. IIIB.

B. Multiple Argument, Including Discrete Indices

If the function to be expanded, f, of argument z
is a tensor of rank d, it will have discrete-valued
indices aV’, &, - -+ | a' to denote its components.
We assume that x, in turn, is a multiple or vector
with ¢ components, each component ranging over
a continuum of values. If f is thought of as a vector
in function space, the components of = are a set
of ¢ continuous-valued indices on the same footing
as the a‘’, and we denote them by £, 2®, - - - | *.®
(N. B.: Vectors or quantities having multiple compo-
nents will enter the discussion in so many interrelated
ways that it would be profitless and even confusing
to distinguish them by typographical devices, such
as boldface type. It has already been stated that
in this section z stands for a ¢-dimensional vector,
or a c-tuple. In other places it will always be made
clear whether z stands for a single or multiple
variable.)

If « stands for the d-tuple ¥, --- , &‘¥, and

z (when the context is appropriate) for the c-tuple
(1)

P, -+, 2, the ideal random function of & and z is
ale, ), (2.10)

which must satisfy the moment equations
(a(a7 x)> = 01 (2'11)

(alar, T)a(oz, 22)) = 8a,a,0(x2 — T1),

where the é functions are multiple § functions, in
keeping with the multiple nature of their arguments;
plus further moment equations, as in the case of a
single argument, to ensure Gaussianity. To set up
a transformation analogous to (2.3) in this case,
we extract a factor 3*(0) for each continuous index:

a(a; .’E) = £(a, x)ac/z(o)’ (212)

in which 8(0) is the one-dimensional Dirac & function
of argument zero [with zero argument there is no
convenient way of indicating multiple character in
a Dirac delta function, so we write 6(0) only to
denote a single, or one-dimensional, “Dirac infinity’’].
The variables @ and « are now on the same footing,

8 d stands for the number of discrete-valued indices, ¢ for
the number of continuous-valued indices.
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at least as far as the properties of £(a, z) are con-
cerned; thus we define the (¢ 4+ d)-tuple

B = (a, 1)
and put

ale, ) = a(R) = £(R)67%(0). (2.13)

a({R) is now defined as a random variable by defining
£(R), and this in turn is done by exact analogy to
the simple case: £(R) is for any given R a Gaussian
random variable of zero mean and unit variance,
independent of £(R’) whenever R’ = R.

This definition implies

<£(R)> = 07
ERDER,)Y = 8pup, = Op,cop,n =" -

etc.; or, in words, that to each point of the space
of R there is associated an independent Gaussian
variable of zero mean and unit variance.

The generalized Wiener function for a multiple
argument can be constructed from this ideal random
function. It has to be defined as a function of sets
of points of the space {R}; thus the values it takes
on will be, strictly speaking, analogous not to X(x)
but to

(2.14)

53‘(c+d)p,,(u+d),

dX (@) = f( @) a, 2.15)

(2)
where z is a single variable and s is a measurable
set of points z [X(z) is of course the special case
of (2.15) for which s is the interval (0, z)]. Therefore
we discuss sets S of points of {R}. For practical
purposes these must be constructed additively from
subsets of points x (now again z stands for a multiple
variable) each having some fixed « value, i.e., there
is a range S; of a values comprised in S and for
each o, S has a subset S.(a) of z values, so that
§ is built up as the sum

§=Y 8.

a€8g

(2.16)

S.(e) is assumed measurable, and the measure of S is
M(S) = EZS M[S.(a)]. 2.17)

The generalized Wiener function, which we denote
by X, is defined by

X(8) = 2 a®) = X

RES a€8q

f a(a, ) dz. (2.18)
zESc(a)

As a sum of Gaussian random variables of zero
mean, this will be itself Gaussian and have zero
mean. Its variance can be computed by the usual
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method, with details adapted to the multiple nature
of the argument:

<X2(S)> B a;d */;GS (a) dx

X Saar f 3z — z') dz’
a’€84q z'€E8c(a’)
f dxf oz — z’) da’
a€8qa Yz€E8c(a) z'E8c(a)

= f dr
aESa Y2zE€ES (a)

m

I
™
S
&z
&

(2.19)

agreeing with (2.16).

III. WIENER-HERMITE FUNCTIONALS

A. Review and Reformulation of Hermite Functions
of Denumerably Many Variables

Our formulation of the Wiener—Hermite func-
tionals will be based on the point of view that the
space of functions f is a vector space, with each
value of R (or each set of values of its components)
playing the role of an index. We can then construct
these functionals entirely along the lines of the
formalism of ordinary Hermite functions of multi-
dimensional argument.

We therefore now give, as background, the def-
inition of an appropriate set of Hermite functions
of a denumerable set of variables {£;}. The range
of values of 7 need not be specified; summations
will always be assumed to be carried over all vari-
ables £;.

Using as weighting function exp [— (3., £2)/2], one
possible set of Hermite polynomials forming a com-
plete orthogonal set over (— =, =) in all the £’s
would consist of functions® of the form

Y I (__3_)”] 3t
¢ [H ) 1°

runs over all possible sets

3.1)

where the set --- n, ---
of nonnegative integers.*
The above way of writing the Hermite functions

9 If the range of values of 4 is infinite, 3~ £:2in the weight-
ing function will usually be divergent, hence (3.1) and (3.2)
will not then exist in a strict sense. However, these expres-
sions are used only in a formal sense. The final physical
quantity of any calculation in a theory like this is an expec-
tation value, and expectation values whenever reasonably
defined are convergent quantities.

10 A, Erdélyi et al.,, Higher Transcendental Funclions
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 2,
Chap. 12. In this reference a more general definition is used,
in which the weighting function is the exponential function
of minus an arbitrary positive-definite quadratic form in the
£’s. We have specialized to the unit matrix as the matrix of
the quadratic form.
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is not convenient for defining the functionals, or
any Hermite functions of an infinite number of
variables, since it would explicitly require the speci-
fication of an infinite number of n,—an infinite
number of which are zero anyway, for functions
or functionals of finite order. It is better to specify
the variables with respect to which differentiation
occurs, repeating them to take care of multiple
differentiation. Thus we put

H(")(ily Toy “v ¢y 0y) = eéZE.-ﬂ H (__.a_.> e-%ZE-‘"
k=1 afik
(3.2

The complete set is obtained by letting » range from
zero to infinity, and letting the 7, 4,, --- , ¢, for
any given n range over all possible sets of n 7’s,
repeated 7’s being allowed.

It is more or less obvious that this set is the same
as the previous one, and we omit the proof. One
essential remark should be made concerning the
notation of (3.2): the quantities ¢,, %,, --- , 7, in
the parenthesis of H (i), 4,, --- , 4,) are not the
arguments of H™ in the usual sense of Hermite
functions, rather the £'s are the arguments in this
gense; but in the usual sense of the theory of random
functions H *” is a random function of the ,, %5, « « + , %,.
It will be noted that the superscript = is not strictly
necessary, since the order of the polynomial is
indicated by the number of indices ¢, but this
redundant index is often a help in the readability
of formulas.

B. Explicit Definition of the Functionals

When it is realized that for each different value
of 7 we have in the above a completely independent
variable £;, the formal result obtained can imme-
diately be taken over for functionals. We simply
replace ¢ by R, writing ¢(R), and realize that again
for each different R, i.e., for each distinct set of
values of R, --- , R*“*?, we have an independent
variable §(R). (We use subscripts to denote different
values of R, viz.: R,; the subscript is to be dis-
tinguished from the superscript, which labels com-
ponents of R.) The Wiener-Hermite functionals are
then defined by

e )Rn) — 6M/2(0) e%ZnE’(R)

k=1

Hn(Rly RZ)

in complete analogy to the discrete polynomials
(3.2), except for the factor §*?(0), which are ex-
plained later. The remainder of this section will
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be devoted to discussion of this formula and to
expressing it in various alternative ways.

(1) The summation over R in the exponent is
a simplifying convention which takes advantage of
the reduction of integration to summation made
possible by our symbolic calculus. It may more
familiarly be interpreted as an integral as far as
the continuous components of R are concerned; the
transformation is straightforward:

SE® = £ Teea) = T T 70
Z f a’(a, z) dz,

where the integral is over the entire range of points
z. The replacement of §7°(0) by dx is based on
Eq. (A5) of the Appendix.

The integral in (3.4) diverges, of course, with
probability one*; but see Footnote (9).

(2) The factor §"/*(0) in the definition of H™
ensures Dirac é-function normalization for the con-
tinuous components of B (see Sec. IVC, second
paragraph). With it, the derivatives with respect
to £(R:.) can be written as functional derivatives
as far as the continuous components of R, are
concerned: With the use of (2.13), we have

&0 11 ( 35(R. )> -1I (—F}@ 5&%"))

r(-L _a__>
kI.Il ( dz da(R,)/’
where dz = dz‘" dz® ... dz‘”. When R has only
continuous components, the factors of the product

(3.5) are functional derivatives, and may be written
in familiar form

(3.4)

3.5)

I

1 8 b

4z 9a(By) — dalBy) (3.6)

When R has both discrete and continuous compo-
nents, the factors of (3.5) are hybrids, being ordinary
partial derivatives relative to the discrete compo-
nents of R, and functional derivatives relative to
the continuous components; and it would then seem
best to leave H™ in the form (3.3).

(3) The definition (3.2) for the Hermite functions,
as distinguished from (3.1), exhibits their tensor
character. Similarly the form (3.3) exhibits the funec-
tionals as tensors in function space: Let £(+) denote
the vector whose components are the ¢(R), R being
allowed to range over all of its possible values.
That is, if e(R) is the unit vector in function space
for argument R,
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Ke) = 2 e(BER). 3.7)
Denote the gradient in this function space by
a3
)~ 2B am aE(R) (3.8)

Then the Wiener-Hermite functionals (3.3) are the
components of the n-adic

(n) — 6nc/2(0) eiE( YeE( )[ 8/6&( )]n —dE() g ), (3 9)

where the dot between the £(-) denotes scalar
product in function space and the nth power denotes
the direct product of » vector factors 9/90£(+). The
Wiener-Hermite functional is obtained from the
tensor as

H(")(Rly RZ} Sty * e(Rn)'H(n)’

(3.10)

in which e(R,) e(R.) --- e(R,) is a direct product,
and the dot denotes an n-fold scalar product. Since
(3.3) is independent of the order of differentiation,
the order of the unit vectors in (3.10) may be changed
without affecting the result.

R,) = eB.)e(R,) -

IV. EXPECTATION VALUES
A. Outline of Method

The expansion of a random function f in Wiener—
Hermite functionals is given by

fB) = 2 KV®; R)H(R,)
Rl
+ 2 K®R®R;R,,R)H® R\, Ra) + -
Ri1.Es
+ Z K(n)(R;RH R27 et )Rn)
Ry ,Rs,***,RB»

X H(n)(Rh Rz; Tty Rn) + - (4°1)

[It has been assumed that f(E) has zero mean for
all R, which removes any H‘” term and does not
lead to any significant loss of generality.] Here it
must be borne in mind that the kernels K are
ordinary functions of their arguments, while the
H’s are random functions.

The statistical properties of f will be determined
by its moments, i.e., by expectation values of the
form

GRORB) -+ fB™)). #.2)

The computation of such an expression can by
commuting the ( ) operation with the sums in (4.1),
be reduced to the evaluation of integrals of products
of the K’s, since the expectation values of products
of H’s are invariably combinations of Dirac and
Kronecker é§’s. Hence we now address ourselves to
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the problem of the evaluation of the expectation
values of products of the H’s.
From the Gaussian distribution of £ we have

<H(m)H(ns) - H(m)>

- (n0) py (aa) n) —p g dE(R)

__fH H o HPY E(R)I,;I(Zw)*

= ~1282 (B) pytan) pyna) R < AC TP —1Ze R dt(R)
fe H™H H™e IRI 20}

(in this and other equations for expectation values,
arguments are to be thought of as assigned to the
H™ | but are omitted for the sake of brevity). The
motive for the last form of writing" is that exp
[—1>" £*(R)] is the Wiener-Hermite function-func-
tional (not polynomial-functional) of order zero, and
the H’s can be written very simply in terms of
“ereation” and ‘“‘destruction” operators which raise
or lower the order of Wiener—Hermite function-fune-
tionals. JA new degree of verbal fine-structure has
been introduced here. In mathematical physics, the
distinetion between Hermite polynomials and
Hermite functions is that the latter contain as an
extra factor the square root of the weighting function
associated with the former, so that the inner product
for the Hermite functions has weighting function
unity. However, we have earlier defined Hermite
“functionals” as generalizations of Hermite ‘‘poly-
nomials” in which the number of variables becomes
nondenumerable, i.e., the funetionals have in their
inner product the (generalized) weighting function
of Hermite polynomials rather than unity. If the
functional generalization of an Hermite polynomial
is a Wiener-Hermite functional, what shall we call
that of an Hermite function? We could have avoided
this difficulty by calling the functional generalization
of the polynomial a “polynomialal”’, but this seemed
unbearable on grounds of esthetics and euphony,
and people might have thought we were only
stuttering. Therefore we decided as follows: Where
the distinction between weighting functions needs
to be made clear, to speak of the functionals with
weighting function exp (—3, £(R)/2) as “poly-
nomial-functionals,” and to refer to the others as
“function-functionals’; and where the distinction is
not required by the context, to drop the modifier.]
That is, writing

11 Equation (4.3) may be interpreted as follows: The
probabilistic expectation value of the functional H() - .. H(»1)
18 equal to the quantum-mechanical expectation value of the
operator functional H») -.. Hx of the operators §(R,) - - -
in the “vacuum state’’ (multidimensional harmonic oscillator

ground state), whose wavefunction (before normalization)
18 exp (—3X £(R)).
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h(m)(R” Rzy cee Rm)
— e—}Z;z(R)H(m)(Rl, R2, e, Rm) (4:4;)

for the Wiener~-Hermite function-functional, (4.3)
will become a power of 27 times the inner product
of 2'” (on the left) with a linear combination of
W’s of various orders. Only the A” term on the
right gives a nonvanishing contribution, and the
problem therefore may be said to be that of finding
its numerical coefficient, since

(27r)—%(n.+ veetnr) (h(O) , h(o))

- fe—%Zwm I;IG?Z(SZ -1,

(4.5)

and the evaluation of this coefficient can be simplified
considerably by the creation—destruction-operator
device.

B. Wiener-Hermite Functions and Functionals in
Terms of Creation and Destruction Operators

The starting point for expressing H™ (R,, R,,

-+, R,) in terms of creation and destruction op-
erators is the following expression'” for the Hermite
polynomzal of a single argument y:

m

mw = 3 () o bt

k=0

(4.6)

where
C=4%y—d/dy, D=3y+d/dy

are, respectively, creation and destruction operators
on the Hermite funcitons k., i.e., given

4.7)

—y?/4

hy = e , (4 8)

then

Ch, = hnsy,  Dhy = nho_,. 4.8

Warning: In the context of discussions of Hermite
functions of a single variable H,(y), ¥ is the argu-
ment of H,, (c¢f. Sec. IITA). Our notation for Hermite
functions of a single variable therefore is not con-
sistent with that for multiple variables. The dis-
tinction is eclear if it is realized that in the former
the H is labeled by a subscript, and in the later by
a superscript.

It will be observed that the expression for H,(y)
in (4.6) would be the expansion of (C' 4+ D)™ accord-
ing to the binomial theorem if all D operators were
moved to the right and C operators to the left in

12 A Siegel, “A New Expansion of the Differential Oper-
ator for the Time Development of Fluctuation Distributions,”

in Rarefied Gas Dynamics, edited by L. Talbot (Academic
Press Inc., New York, 1961).
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the individual terms of the expansion. We accord-
ingly write'®

H.p) = : (C + D), 4.9)

where the colons : : denote an ordered product in
which the C and D factors of the operator inside
are rearranged so that a C operator never operates
before a D operator.

The generalization of (4.9) to the functionals is
readily done as follows: Since differentiations com-
mute, all derivatives for equal values of R in (3.3)
may be grouped together. Suppose there are n,
differentiations 9/8R’; n, differentiations 8/4R",

- ; n, differentiations 9/0R’, --- . Then (3.3)
may be transformed into

6756/2(0) e‘“’(ﬂ')[_a/ aE(RI)]"l e“%f’ [¢. 28]
X e%E’(R”)[_a/aE(R”)]nn e—!E’(R") -

¢ e“,“z.)[_a/ag(Ra)]m e—‘}f’(R') e (4:.10)

[This is equivalent to the previously discarded way
of writing, namely (3.1), which happens to be useful
for this particular application.] But this is a product
of Hermite functions of single argument:

H(n)(Rla By ooy Rn)

= &"/(0)H,[ER)NHER)] - -+ H, [ER)] -+,
4.11)

which may be written, according to (4.9), as

H®(R,, By, -+ ,Ry) = 8"/(0) : [CR') + DR')" :

X [C@®R") + DR : -

X :[C(RY + DR :---, 4.12)
where C(R), D(R) = &R)/2 F* d/dt(R) But.
R’, R”, «-« are all unequal to one another, hence
the C’s and D’s in the different ordered products
commute with one another. Such ordering in this
expression as is due to the order in which R/, R" etc.
appear is therefore immaterial and the over-all
product may without changing its value be ordered
with all C operators on the left and D operators
on the right. Denoting the ordering of all C, D

operators regardless of their B tags by the same
symbol : : means that

H"®, Ry, -+ R = §7°0) : [C®) + DE)]™
X [C@®") + DR -+ [CR) + DR - .
(4.13)

13 G. C. Wick, Phys. Rev. 80, 268 (1950), introduced the
notation of Eq. (4.9).
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But now, again due to the commutation of C' and
D operators belonging to different R values, the
sorting out of equal R values which led to (4.10)
may be reversed and the ¢ 4+ D factors restored
to their original order as in (3.3). We thus obtain
the result

H(n)(Rl} R2J IR Rn)

n

= "%0) : [] [CRw) + DR -

k=1

(4.14)

It is worth noticing that this is the simplest imagin-
able generalization of the one-discrete-variable form-
ula (4.9). [Note that it reduces correctly to (4.9)
if the B, are discrete-valued and all equal.] To go
from (4.9) to (4.14) all one does is the following:
(a) Attach a factor 8™ for each continuous variable,
(b) insert between the : : a factor C(R,) + D(R.)
for each variable R, instead of m factors C + D.
But simple as the result may be, it does not appear
to be self-evident.

C. Calculation of Expectation Values

As stated in Sec. IVA, we are seeking formulas
for the expectation values of products of Hermite
functionals. We derive these by a method borrowed
from the quantum theory of fields, but make the
exposition self-contained and not dependent on
quantum-field-theoretical vocabulary. The result,
which we prove, is

<H(M)(R1, . ,R",)H(M)(Rm+l? R ,RM_M’) e
X H("M)(Rﬂ1+nn+"'+ﬂm—x+l} Tt 1] Rﬂn+n:+---+nm)>
[3(O)p ™+ e rizs

distinet exogamous
exogamous  pairs

— pairings
if n,4+ -+ +n, iseven, (4.15)
0 if n,+ -+ 4+ n, isodd,
where the symbols are to be interpreted as follows:
aR.‘Ri (416)
exogamous

pairs

is a product in which each R index from R, to
R,...... appears just once as a subscript of the
Kronecker delta multiplicand, subject to the re-
striction that each pair coupled in a delta function
be (using a term borrowed from anthropology)
“‘exogamous’ in the sense that the two spouses in
it come from different H functions. In the summa-
tion, such a product appears just once for each
distinet way of arranging all the R variables in
exogamous pairs (mere interchange of arguments in
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a pair is not considered to give a distinct way of
pairing).

It will be noted that the power of 6(0) in (4.15)
is just such as to make a Dirac § function out of
each Kronecker & that has continuous indices when
the multidimensional Kronecker 6 is written out in
terms of unidimensional ones.

We shall see in the derivation that the result (4.15)
can be given a simple heuristic interpretation.

We now give the proof, breaking it down into
five steps.

1. Ezxpectation of &
As is well known, for a Gaussian £ of zero mean,
€ =@~ Dl
=0

(n even)
(n odd).

We wish to emphasize, for the sake of our proof,
that this quantity is equal for any n (even or odd)
to the number of ways of arranging n points (or
objects of any kind; but points lend themselves
better to our later interpretation) in pairs such that
every point is paired with just one other point.

(4.17)

2. Ezxpectation of a Product of £'s of Different
Arguments

Since £'s of different arguments are independent,
if we have k points R,, B,, --- , R, we may write

ERER) -~ §B)) = EXEY -+, (4.18)

fa+ b+ --- =Fkand the B, R,, --- , R, are
equal in groups containing a, b, --- members re-
spectively and unequal outside these groups. From
this and the pair interpretation of the last paragraph,

number of ways of arranging the & R's}

<£(RI)E(R2) e E(Rk» = {:gut:x‘la%?ach R is paired with just one
(4.19)

This number may be evaluated as follows: Define
an “indicator’” function of R,, R,;, --- , R, which
is equal to unity when every R is paired with just
one equal R, and zero otherwise. Such an indicator
funetion is equal to

H 612.'131)

paira »

(k even) (4.20)
the product over pairs being defined such that every
two R’s which are paired in the given arrangement
appear in the same § function; and to zero if %k is
odd. The number of arrangements in (4.19) is then
the sum of the indicator function over distinct
pairings, i.e.,
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(EBIERS) -+ - ERL))

Spir; if k is even,

distinet paira
pairings

4.21)
0 if k isodd.

8. Ezxpectation of a Product of H™’s (Preliminary
Discussion)

The value of
[8(0)) (e
% (H(M)(Rl . R,,)H("')(R,.,-H. . R"“_m) N
X H(M)(Rm»--nm-.ﬂ- o Baseoinn))
= GHR) -+ B ¢ i Rus) o EBain) T

X i ERBuseotnmarsr) o ERnitennnn) oy (4.22)
differs from that of
(E(Rl) Tt E(Rn;)E(Rmi-l) tt e S(Rﬂ1+"'+ﬂm)>’ (4'23)

ie., from an expectation of the same form as that
evaluated in the previous paragraph, only in that
every C, D-operator product obtained when the
former is multiplied out has, in the latter, the C
operators within each : : moved to the left of all
D operators in the same : .. To see what difference
this makes, we need a lemma on products of C' and
D operators, proved in the next paragraph.

4. Ezxpectation of a Product of C and D Operators of
Like Index

Let Q be a product of C and D operators operating
on the same variable, in any order. In order to have
nonzero expectation value, the numbers of C and
D operators must be equal, and the number of
C operators to the right of any point in the product
must be not less than the number of D operators
to the right of the same point.'* Assuming these
conditions, the value of (Q) may be obtained as
follows: Commute each and every C operator in Q
to the left of all D operators. By commuting a C
operator to the left of all D operators we mean
replacing it by the operator obtained by trans-
ferring it to the left of all D operators plus a sum
constructed as follows: Strike out of @ the C in
question and one of the D operators to its left;
the sum is then to consist of one term so obtained

1 To see this, and also to interpret some of the ensuing
arguments, the quantum-mechanical picture of Footnote 11
is helpful. One then regards the expectation value of @ as
a quantum expectation value of the operator in the “vacuum
state’’ hy, i.€., as an inner product

@) = (2w)~¥(ho, Qho).
Thus @ must transform hg into a multiple of itself, i.e., have
as many creation as destruction operators, in order to have
nonvanishing (Q); ete.
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for each D operator to the left of the C operator
concerned. This is justified by the identity

D"C = ¢D™ + D"'[D, C]
+ D™D, C]1D 4+ --- + [D, CID™,  (4.24)

combined with (a) the fact that the expectation
value of the first term vanishes, (CD™) = 0 [cf. Foot-
note 14: (hy, CD™hy) = (Dhy, D™he) = (0, D"hy),
if we note that D = C*]; (b) the fact that [D, C] = 1.

When this process has been carried out for all
C operators, it will be seen that (Q) is equal to the
expectation value of a sum of unit operators, one
for each way in which each C operator in @ can be
paired with a D operator on its left. Since (1) =
(@) = Numbers of ways of arranging the C and
D operators of @ in pairs, each pair being such that
its C operator lies to the right of its D operator in
the original order of Q. Figure 1 illustrates a per-
missible mode of pairing.

5. Expectation of a Product of H™’s (Conclusion)

Consider the result of the previous section relative
to that of Sec. IVC3. According to IVC4, a pairing
of a C and a D operator of like index can contribute
to the expectation value of a product of operators
of the same index if and only if the C operator
lies to the right of the D operator. But in IVC3
we saw that all C operators within a : : lie to the
left of all D operators within the same : : Hence
(4.22) differs from (4.23) only in the omission from
the former of all contributions from the pairing of
R’s which lie in the same : :. If such R’s are called
endogamous (as antonym of exogamous), the theorem
(4.15) follows.

V. CALCULATION OF THE FIRST APPROXIMATION
TO THE FLATNESS FACTOR FROM THE
WIENER-HERMITE FUNCTIONAL
EXPANSION

The flatness factor of the random variable f(R)
(obtained from the random function f by assigning
the value R to its argument) is defined as

B[f(R)] = (FRY/FR)Y. (5.1)

Since ® = 3 for a Gaussian random variable, ® — 3
is a measure of the deviation of f(R) from Gauss-
ianity,'® and will be essentially determined by the
higher terms of the series (4.1). (Absence of higher
terms is a sufficient, but not necessary, condition
for Gaussianity; the vanishing of ® — 3 is a nec-
essary condition, but not sufficient.)

18 As a single random variable. We are not now discussing

the joint distribution, or joint Gaussmmty, of two or more
random variables f(R,), f(R,), -
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phocce pcopcDCe Fie. 1. A permissible mode of pair-
NN N ing of C and D operators.

Assuming that successive terms of the functional
expansion make successively smaller contributions
to physical magnitudes, we proceed to evaluate the
numerator and denominator of ® in second approxi-
mation, With the notation

(K, HV) = . I:_,:, . KYR;R,, R., --- ,R)
X HY[R,, R,, -+ , Ri), (5.2)
Eq. (4.1) becomes
f(R) = (K", H”) + (K, H®)
+EDH®) + 5 (63)
then
PE) = (K, H) + 2K, H)K®, H®)

+ (K(”, H(z))z + 2(K(1), H“))(Km, H(3>) + .. )
5.4

and

(FR)) = (K®, H) + 4KV, HV(K®, H?)
+ 4(K(1), H(l))S(K(S)’ H(s))

+ 6(K(1), H(l))2(K(2), H(Z))2 + . _>. (55)

The next step is to distribute the expectation
operation over the several sums. Then we commute
( ) and Y operations. As for the step following this,
we would have for example from the first term in
the last form of writing of (f*(R)), at this stage,

2z EPR)KPR)XHD RIH P (R,)).

Ry ,Rs

(5.6)

Thus the problem has now been reduced to the
evaluation of expectation values of products of H’s.
Actually the only such products that must be in-
cluded are the following:

HPBIHVR,)) = 8RB, — By) ®.7)
(H?(R,, R)H™ (B, R.))
= 3R, ~ Ry)6(R. — R.)
+ 8R, — R)oB:. — B) (5.8

(HPR)H R)H (R)H™ (R,))
= (R, — R,)é[R;s — R,)
+ 8RB, — Ry)8(B, — R,)

+ &R, — R)S(R: — R,), (5.9)
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(HVR)HVR)HP(R,, RY)H® (R;, R)
= 8(R, — R,)8(R; — R5)8(R, — Ry)

+ R, — R;)8(R; — Re)8(R, — R:)

+ 8(R; — R3)8(R, — R5)8(R, — Rs)

+ (R, — Ry)6(R, — Re)o(R, — R5)

+ R, — R;)8(R, — R3)8(R, — Rs)

+ 8(R, — R;)8(R, — Ry)(Rs — Ry)

+ R, — R)6(R; — Rs)8(R; — R;)

+ &R, — R)6(R, — R;)8(R; — R)

+ 8(R, — Re)o(R, — R;)0(R, — R)

+ 8(R, — Ro)8(R, — R,)8(R; — R;) (5.10)

(HPR)H® (R)H (R)H® (Ry, Ry, Rs))
= &R, — R,)3R, — R;)8(R; — Rs)

+ (R, — R)6(R, — R5)8(R; — R)

+ (R, — R;)8(R, — R,)8(R; — Ry)

+ 8(R, — R;)8(R, — Ry)8(R; — R.)

+ 8(R, — Re)6(R, — R;)6(R; — R,)

4+ 8(R, — Rs)6(R, — R)o(R; — R;). (5.11)

The values given have been obtained from Eq. (4.15).
All others arising from terms which appear explicitly
in Egs. (5.4) and (5.5) vanish, either because the
total number of variables appearing in the H’s is
odd, making it impossible to pair every R, or
because, although pairing of all R’s is possible, there
are no possible exogamous pairings [the sole term
of this kind is the fourth term in (5.4)].

We now assume, with no actual loss of generality
(because of the invariance of the Wiener—Hermite
functionals to permutations of their indices), that
every kernel K (R; R, R., -+ , R,) is invariant
with respect to all permutations of the indices
Ry, R,, - - -, R;. This has the following effect: (a) All
products of &’s within any one of (5.8), (5.9), and
(5.11) are mutually equivalent, and (b) the first
four such products in (5.10) are mutually equivalent,
as are the remaining six.

We then find

F®R) = KO-K™) 4 2K :K®) + -
F®) = 3E™ KDY + 12K KK : K™®)
+ 24(K(1)K(1)K(1) EK(3))
+ 48((K™-K®)-(KV . K®) + - ,

in which a dot between two terms in parentheses

(5.12)
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indicates summation over any pair of disposable
indices (i.e., indices R,, R, - -- , but never R itself,
which have not yet been summed out), taking one
from each side of the dot; e.g.,

(K®-K) = [ K®®R; R)K®®; R, B2) dR,,
(5.13)
leaving a ‘“‘disposable” index R,.

Suppose now that the K‘” are of order of magni-
tude regularly decreasing with increasing I, as they
would be if K were proportional to the Ith power
of a small constant. Then to second approximation,

<f2(R)>2 o~ (K(l).K(l))ﬂ + 4(K(l)'K(l))(K(2) :K(z))
(f'(R)) = 3(F(R))" + 24K : K®)

+ 48((K®-K®)-(KV-K®)  (5.14)

and

Pf(R)] = 3 + 24[(K™" : K®)
+ 2(KV-K®)- (K -K®N)/(KP-KP)* (5.15)

The second term on the right-hand side is the correc-
tion to Gaussianity in first approximation.

VI. RELATION TO MORE RIGOROUS THEORY

A. Expression of Functionals in Terms of the
Wiener Function

We discuss here how the preceding formalism can
be related to the mathematically rigorous formula-
tion of the Wiener function. The basis of the rigorous
theory is the function X(z), with postulated prop-
erties identical with those derived by us iIn the
paragraph containing Eqgs. (2.7)—(2.9), which func-
tion is shown by Wiener in Refs. 46 to be well
defined.

A linear functional of X is written by Wiener as
a Stieltjes integral

f f(x) dX(z).

(Even this does not exist in the strict mathematical
sense, but is rigorously defined in terms of the
quantity obtained through integration by parts:

6.1)

~ [ x@ dajta), 6.2)

provided f(z) is such that this last integral does
exist.) A linear functional as written in our formalism,

[ 10 ax = [ j@H. o) dz
6.3)

= [ 10H" @) dz,
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derives its rigorous meaning from the replacement
of a(x)dr by dX(z), which puts it into the form
(6.1). The evaluation of expectation values of pro-
ducts of such linear functionals as (6.3), which we
perform here by exchanging the order of the opera-
tions of integration and taking the expectation value,
is justified by the fact that the results agree with
those obtained by Wiener.®

The use of the Wiener—Hermite functionals defined
in this paper is really only an extension of the use
of the ideal random function a(zx) in place of X(z).
Linear functionals in terms of our Wiener—Hermite
functionals are of the form (6.3) and have therefore
already been justified. Higher-order functionals may
be considered term by term, and each higher term
can be reduced to something which can readily be
interpreted in terms of such integrals as (6.1). As
an example, take the second-order Wiener-Hermite
funetional. Since

H®(z,, 2,) = a(z)alz,) — 6(x; — z2), 6.4)

it can be given a meaning by integrating over z,
and z,:

[ [ Bt ) dut iz
[} o

= X(z)X@,) — M(z,2), (6.5)

where M (z,, z,) means the smaller of 2, and z..
In this way H® (z,, z,) is reduced to the product
of Wiener functions and the harmless M(z,, z.),
a nonrandom variable. The second-order term in
a Wiener—-Hermite functional expansion is thus in-
terpretable as a Stieltjes double integral, e.g.,

[[ 1, zyax@yaxe) — [[ e, 2 M, )

Expectation values of products of functions of this
type, involving any number of products of different-
ials of X(z)’s, do not differ in principle from ex-
pectation values of products of linear functionals,
which have already been discussed.

B. Relation to Functionals of Cameron and Martin

Our functionals are in form a special case of those
of Cameron and Martin." The nature of the relation-
ship can be seen most readily if we take the simple
case in which R is a single continuous variable,
which we shall call @ at this point, running from
— oo t0 4. Let the functions alw, Q), with w
running over a discrete spectrum of values, form
a complete orthonormal basis in the space of func-
tions of @, satisfying the unitarity properties
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Y ate, Qale, @) = 5@ - @) 6)

[ o, @, @ a0 = 5. 6.8)
Then the random functions

46) = [ ofe, @ dX(@© (6.9)

are a set of independent-multi-Gaussian variables
of mean zero and variance one. The functionals of
Cameron and Martin can be expressed in terms of
the A (w) in the form used by us in Eq. (3.3):

H(")("-’lyw?r tte 7°~’n)

_ A s T (_ 9
¢ I\ ~52ey

The sum over w in the exponents is of purely formal
significance, since it diverges almost everywhere in
Wiener space (i.e., with probability one). Our func-
tionals in the case of one-dimensional continuous
variable R are obtained by replacing w by R and
putting

)e—gzmum) . (610)

[the latter of which does satisfy (6.7) and (6.8),
as may be seen by formal manipulation]. In this
case one obtains

A®) = [ #® - @ ax(@ = #0) dxX(®)
= 3Y0)[dX(R)/dR] dR = 5 *(0)a(R) = £R), (6.12)

where a(R) and £(R) are the same as in Eq. (2.3).
Substitution of £(R) for A(w) in (6.10) yields the
H™ of (3.3), apart from the normalizing factor
8"°/%(0).

The Cameron and Martin functionals are Hermite
functions of a denumerable set of independent linear
functionals of the Wiener function. In our case the
linear functionals are specialized to be proportional
to the values of the derivative of the Wiener function
itself at the various values of its argument. Since
the argument is continuum-valued, the results are
improper functionals. But the use of a spatial or
spatiotemporal argument makes for much greater
clarity of interpretation when these functionals are
used in the solution of differential equations in space
and time.

APPENDIX: INTEGRALS AS SUMS IN THE
s~-FUNCTION CALCULUS

The basic definition of the & function 6(y — =z)
is that, for a certain class of functions f(x),

[ 1@ oty - 2) dz = 1) (A1)
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if the region of integration of z includes the point
2z = y. When the requirement (Al) for valid use
of the 6§ function is satisfied, this same integral (A1)
may be interpreted formally as a sum, along the
following lines: (1) Consider the integral sign to
stand for the operation of summation over all points
in the region of integration. In a symbolic non-
rigorous calculus such as this the nondenumerabil-
ity of the set of points of summation should not be
considered a hindrance to such an interpretation;
but the reader may, if necessary, overcome this
difficulty in the usual way by likening the integral
to a finite Riemann sum with exceedingly fine sub-
division of the region of integration. (1) In the
summand f(z)6(y — z)dzx, consider the differential
dz to be a constant magnitude independent of z.
(In the Riemann-sum interpretation, this means that
the region of integration is divided into equal in-
tervals, their length in the symbolic notation then
being denoted by dz, which is then the ‘‘infinitesimal”
of old-fashioned treatments of ealculus.) Then it
may be taken outside the integral (= sumation) sign

[1@ sy~ 2)da = a [ ) sy — 2. (42

(3) Put
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3y — 2) = 8,./dx, (A3)

where 6,, is the Kronecker delta, equal to 1 when

y = z, to zero otherwise. (In the Riemann-sum

formulation, we would have to say that §,. is equal

to 1 whenever z and y are in the same interval of

the Riemann subdivision, to zero otherwise.)
Substituting (A3) into (A2),

5
fx) 8y — x) dzx = | f(x) = dx
-[ f dx (A4)

= [ 1) 8. = 1),

agreeing with (Al). Since it gives the same result
as (A1), this point of view must be considered valid
wherever (Al) is valid. It is seen that it can easily
be taken over to functions of more than one variable,
and to multiple integration.

It should be pointed out that, putting y = z in
(A3) we obtain the useful identity

8(0) = 1/dz, (A5)
expressing an inverse relationship between the mag-

nitudes of the “infinity”’ 8(0) and the “infinitesimal”
dz. Substituting into Eq. (A3),

8y — 2) = 8,.80). (A6)
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The Wiener-Hermite functional expansion, which is the expansion of a random function about a
Gaussian function, is here substituted into the Burgers one-dimensional model equation of turbulence.
The result is a hierarchy of equations which (along with initial conditions) determine the kernel func-
tions which play the role of expansion coefficients in the series. Initial conditions are postulated, based
on physical reasoning, criteria of simplicity, and the assumption that the series is to represent the late
decay stage (in which the Gaussian correction is small and also decreasing with time). These are shown
to justify an iterative solution to the equations. The first correction to the Gaussian approximation
is calculated. This is then tested by evaluating the correction to the flatness factor, which for an
exactly Gaussian function has the value 3, but which has been found by experiment (in real three-
dimensional fluids, of course) to have a value which deviates from the Gaussian value increasingly
rapidly with the order of the derivative. We utilize this effect as a test of the inherent ability of the
‘Wiener-Hermite expansion to bring to realization the physical properties implicit in the Navier—
Stokes or Burgers equations. The various contributions to the flatness-factor deviation, when com-
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puted, do show a potential capability of providing a theoretical basis for the effect.

L. INTRODUCTION

N the statistical theory of turbulence’'* the veloc-
ity field u(x, ¢) as a function of position z and
time ¢, which satisfies the Navier-Stokes equation

du/dt +u-Vu = —Vp/p +»Vu  (1.1)

(p = density, p = pressure, and » = kinematic
viscosity) is regarded as a random variable. One of
the best-established experimental facts in this field
is that in the early stages of time decay of the
turbulent motion, the velocity field at a point is
Gaussianly distributed to within experimental error,
and the joint distribution of the velocities at two
different points is joint-Gaussian except when the
points are close together, in which case strong devia-
tions from Gaussianity occur.® Moreover, theory
indicates that in the late stages of decay the joint
distribution tends to purely Gaussian form.* These
observations form the motivation of an expansion,
originally proposed by Wiener® and later revived

* Work of A. S. (in part) and T. I. (in full) supported b:
U. 8. Air Force Office of Scientific Research; of W. C. M.
(in part) by the Office of Naval Research.

t Present address: Kwansei Gakuin University, Nishi-
nomtya, Japan.

' G. I. Taylor, Proc. Roy. Soc. A151, 424 (1935) and fur-
ther references which may be found in Ref. 2.

* G. K. Batchelor, The Theory of Homogeneous Turbulence
(Cambridge University Press, New York, 1956).

# Experimental references on the distribution of u, with
interpretations, will be found in Ref. 2, Chap. VIII.

4 Reference 2, Sec. 5.4.

8§ N. Wiener, Fifth International Congress for Applied Me-
chanics (John Wiley & Sons, Inc., New York, 1939).

in modified form by two of the present authors,’
of the velocity field in a series of functionals of the
“‘ideal random function” or derivative of the Wiener
random function. We call such a series the ‘““Wiener—
Hermite series.” Its first-order term is exactly
Gaussian, and the higher-order terms contribute
successive corrections to the Gaussian form. The
experimental data on the approximate Gaussianity
of the velocity field lead to the expectation that
this series would be rapidly convergent, hence a
manageable and accurate mathematical method for
turbulence calculations should be obtainable by
discarding all but its first few terms. (It has been
pointed out to us’ that the Wiener—Hermite series
has the important advantage that, since it is an
expansion of the random function and not of its
probability distribution, all quantities computed
from it are, by construction, implicitly derived from
a posttive-definite probability distribution.)

To our knowledge, no further development of this
method (other than a preliminary report by our-
selves® of the work to be described more fully here)
has been published to date (see, however, Foot-
note 11). The main reasons for this are undoubtedly
(a) that the mathematical properties of such ex-
pansions first needed to be developed, and (b) that

¢ A. Siegel and W. C. Meecham, Buli. Am. Phys. Soc.
Ser. 11, 4, 197 (1959).

7 By R. H. Kraichnan,

8 A. Siegel, T. Imamura, and W. C. Meecham, “Wiener-

Hermite Functional Expansion in Turbulence with the
Burgers Model,”” Physics of Fluids 6, 1519 (1963).
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the structure of the expansion, though not com-
plicated, was so unfamiliar® that no physical in-
terpretation was available to guide the intuition in
handling it. The authors of this paper are publishing
at this time a series of publications meant as pilot
studies in the application of this method, which
we consider of great potential value in the study
of nonlinear stochastic equations, to turbulence
theory. The first of these papers,’® to be referred
to here as IMS, is an exposition purely of the
mathematical methods and is adapted to a range
of physical applications more general than turbulence
theory.

The present paper and another which appears
elsewhere'' are applications of the method in the
regions of small and large Reynolds numbers, re-
spectively. In keeping with the spirit of a pilot study,
meant mainly to develop insight into the general
structure of the method, it will be drastically sim-
plified in three principal ways:

(a) We use the model equation of Burgers,'”

Spudt—@ufer) =0, (19
(where u is a scalar function, z a scalar position
variable, ¢ is the time, and » is a constant) instead
of the Navier-Stokes equation. Besides making both
the spatial variable and the field itself one instead
of three dimensional, this equation eliminates the
pressure term of the Navier-Stokes equation; yet
the work of Moomaw'® indicates that, with respect
to statistical properties, the Burgers model behaves
quite satisfactorily, and should therefore be a good
vehicle for our study.

(b) We attempt a description only of the late
decay stage of the random field. “Decay’’ means that
the forces which have produced the motion of the
fluid have been turned off; hence the mean velocity
is decreasing due to dissipation. This means that
we do not attempt to describe the way in which
the universal features of the turbulence field arise
from a wide variety of forces generating the flow.

9 It is not unfamiliar in electrical engineering, of course,
where it has already been in use for some years; for references,
see N. Wiener, Nonlinear Problems in Random Theory (Tech-
nology Press, Cambridge, Massachusetts, and John Wiley &
Sons, Ine., New York, 1958).

10T, Imamura, W, C. Meecham, and A. Siegel, J. Math.
Phys. 6, 695 (1965).

(191(;4‘;‘7' C. Meecham and A. Siegel, Phys. Fluids 7, 1178

12 J, M. Burgers, Verhandel. Konink]l. Ned. Akad. Weten-
schap. Afdel. Natuurk. (Sec. I) 17, No. 2 (1939); Proc. Acad.
Sei. Amsterdam 53, 247 (1950).

13D, W. Moomaw, A Study of Burgers’ Model Equation
with Application to Staiistical Theories of Turbulence, Ph.D.
Thesis, University of Michigan, Ann Arbor (1962).
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“Late”” means that the mean velocity has decayed
sufficiently to make the governing equations quasi-
linear, i.e., nonlinear terms are treated as nominally
small corrections although their behavior is of all-
important interest to us as a test of the validity of
the expansion. Model turbulence under conditions
where the nonlinear terms are of crucial importance
has been treated elsewhere by two of the present
authors (Ref. 11).

(¢) In solving our equations for the time develop-
ment of the field, the initial conditions which define
the solutions cannot be obtained entirely from phys-
ical or experimental considerations, but must be
chosen partly according to criteria of simplicity and
certain requirements of convergence.

In addition to the above special assumptions, we
restrict ourselves to the case of spatial homogeneity.

II. EQUATIONS OF MOTION AND
SOLUTION PROCEDURE

A, The Equations of Motion
We take the Wiener—Hermite series in the form

u(z, ) = fK‘”(x — 2)H" (z,) dz,

+ffK‘2’(w — 21,z — 2)H® (2, 2,) dz; dwy + - -
2.1)

The K, which are implicitly functions of ¢ = time,
are ordinary (nonrandom) functions. The absence of
a K'® term implies that the mean value of u vanishes,
i.e., that we are moving with the mean velocity of
the fluid. We assume the K to be invariant with
respect to all permutations of their spatial argu-
ments, since no generality is lost thereby with
respect to the moments of the distribution of wu,
which determine its probability distribution. The
integrations are from — o to + . The H are
the Wiener-Hermite functionals defined in IMS.
This series converges in the mean-square sense'* for
u(z, t) continuous in z, provided the use of a con-
tinuous argument for the constructed functionals
is justified in terms of the given problem (cf. IMS,
Sec. VI.2). Its first term has a Gaussian distribution.
The higher terms are statistically orthogonal to the
first term. [Two random variables, A and B, are
“statistically orthogonal” if they are uncorrelated,
(AB) = 0. The use of the former term puts emphasis
on the equivalent role of the expectation value as
an inner product, since if A and B are functions
of a random variable x with probability density

4 R, H. Cameron and W. T. Martin, Ann. Math. 48, 385
(1947).
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P(z), (AB) = [ A(z)B(z)-P(z) dz. Note that
statistically orthogonal variables need not be dif-
ferently distributed; in fact, they can be identically
distributed, yet completely uncorrelated.] This is
the closest one can come, at least in a general
description, to regarding them as the locus of the
deviation of the distribution from Gaussianity; in
fact, we shall see [v. the expression for the flatness
factor, Eq. (3.2)] that the deviation from Gauss-
ianity does not come purely from terms higher than
the first, but involves interactions between the first
term and the higher terms.

The remainder of this section consists of a sum-
mary of the method whereby a set of differential
equations for the K‘” can be derived from the
Burgers equation; details are relegated to the Ap-
pendix. Our actual applications require only the
equations for the first three nonvanishing kernels,
in Fourier-transformed form. The reader primarily
interested in what we have done concretely to solve
the Burgers equation statistically may then prefer
to skim through the summarized derivation until
he reaches the equations for the said three kernels,
Egs. (2.10)-(2.12).

Since the integrals in the above equation are
convolutions, we can use the conventional notation
whereby if f, g are functions of 7 variables,

f*gsﬁz...f_:f(x_xh... , T — T
X gz, -+ dz,.

Then Eq. (2.1) becomes

» &) dry - (2.2)

u= 2 KV xHY, (2.3)

i=1
The dependence of the K’ on z and z,, --- , z;
only through the differences x — z,, - - - implies an

assumption of statistical homogeneity of » in =z,
corresponding to the common assumption of homo-
geneity in turbulence.

An infinite set of equations for the time variation
of the kernels K’ can be derived by substituting
the expansion for % into the Burgers equation (2)
and equating the kernels of the mutually orthogonal
terms of the resulting expression to zero. First
introduce the notation u’ for the linear part of the
operation in Eq. (1.2),

u'(x, §) = [9/3¢ — »(8°/92") Julx, 1), (2.4
whereby (2) becomes
w' + 1(8/9r)w’ = 0. (2.5)

Substituting (2.3) into (2.5),
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E K(i)’ * H(i)
i

+ % E (5% [K(i)K(i)]) % (H(:')H(i)) = 0. (2.6)
Multiplying throughout by H® = H (2", z{*,

-+ ) and taking the expectation value, we
obtain

E K(i)’ % <H(1)H(i)>

+ _%_ E (:_x [K(i)K(i)]) * (H(”H“)H”)>

=0 (I=0,1,2,---). 2.7

The convolutions in this expression are to be taken
only between functions of like superscripts, thus
there is no convolution over the arguments of H”.

A formula for the expectation value of products
of Wiener—Hermite functionals is given in IMS,
Eq. (4.15). The convolution integrals can then be
carried out. This work is done in detail in the
Appendix, where a general result, Eq. (A1) or (A12),
is derived. We work primarily with the Fourier
transform of this equation. Let us write the Fourier
transform of a function f(x) (which may depend on
other variables not here expressed) by simply re-
placing z by the Fourier-conjugate variable «, viz.:

f(Kly Kg, *° ')
= fei(nzﬁnzﬁ--')f(xh Ta, v ° ) d.’tl dx2 - (28)
Then it is shown in the Appendix that the equation

of motion for the Fourier transform K (x'*") of
the kernel KV (x'*) is [Eq. (A16)]

[(_;% + V(); K)) JK(I)(K(I))
~ > o) 00,4, )
X Z (K(i)(_Kl(L)’ -

app

. (I+J-L)/2
— Kii-jrnys2y K ),

(L
K )

(g (L) (I+J-L)/2
K (K1+(¢—i+z)/2, ) K ) =0

s

2.9

The summations implied by > *, and Zm are
defined in detail in the Appendix. The inner product
is defined by

1=0,1,2,--.

Un, B, o0, ) = @ [ 11w, D*0(L, D d

where the asterisk denotes complex conjugate, and
a is the number of components of &,
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The first four equations are as follows:

I = 0: In this case all terms vanish identically,
either because of the hypothesis K = 0, or be-
cause the assumption of spatial homogeneity—the
dependence of the K" of the series in its primary
form, Eq. (2.1), on z only through the z — =z,
etc.—makes inner products in which all variables
are integrated out, as must be the case with [ = 0,
constant in x. The latter reason is the one that
holds for the nonlinear term of this equation, and
is evidently necessary for the consistency of the
equations of motion with K = 0.

Forl = 1, 2, and 3, we have:

[0/3t + wilKV(ky) = 20 (K® - KP) 4+ -~ , (2.10)
[8/0¢ + v(ky + x2)"1K® (ky, Ks)

= (1/2)(a + )K" ()K" (k)

+ i + ) [BED KM + 2K?P-K™)] + -+,

2.11)
[6/9t + v(ks + K2 + k)’ 1K (k1 k2, &3)
= (1/3)(k; + k2 + k)PKP ()K® (ka, k)
+ i + K + k) [4KP-KY)
+ 2P(K® K] 4+ .- . (2.12)

These are all the equations we need for the present
work. Nonlinear terms have been put on the right-
hand side. Each of these equations contains an in-
finite number of terms, but those in which the sum
of the superscripts of the K’s in the inner product
exceeds the superscript of the linear term by more
than two have been omitted. The operator P in the
K® equations sums the function following it over
all three cyclic permutations of the variables «,, .,
and K3.

Inner products with a dot are to be integrated over
only one variable:

(K“)(K,v Ky, K2y vy, “Ki—l)

. K(i)(K,, KiyKiv1y *°° K,-+,'—2))
- (27")_1‘[ [K“)(K', —Ky, “Ki—1>]*
X KD, ki, hiina) di @13

which is evidently a function of 7 + j — 2 variables.
In the inner products in the equations of motion
the integrated variables and the disposable variables
(those which are not integrated over) are not ex-
plicitly indicated. But there can be no ambiguity
if one uses the above explicit formula for the inner
product and inserts for «;, - -+ k;4;-2 the variables
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that appear on the left-hand side of the equation
of motion concerned.

B. Initial Conditions
1. Form of the Initial Conditions

We seek solutions to the three equations of motion
(2.10)-(2.12) which have the property of rapid con-
vergence of the Wiener-Hermite series for u(z, ).
The convergence (more strictly, decreasingness of
successive terms) depends quite strongly on the
initial conditions. In this and the next section, we
investigate the problem of the choice of initial
conditions.

If the Wiener-Hermite series for u converges
rapidly, one would also expect the right-hand sides
of the equations of motion to fall off rapidly with
increasing values of the superscripts involved. We
make this also a condition on the K‘. As a simple
way to formalize this condition, we suppose the
terms on the right-hand side to decrease with the
number of integrations in the inner product; another
suitable number, which increases in 8 way necessarily
correlated with the number of integrations, is, of
course, the sum of the superscripts involved, but
we shall see that it is the number of integrations that
more directly causes the decrease.

The natural measure of smallness of these terms
is the value of ¢, measured from the beginning of
decay or any time thereafter, since the linearization
and supposed increase of Gaussianity both develop
with increase of time during the decay period. We
shall see that a decrease of the inner products, as
negative powers of ¢ which are increasingly negative
according to the number of integrations, can be
realized as a rather natural outcome of the expo-
nential form of the solutions of the equations of
motion.

If the above is true, the equations of motion be-
come in first approximation

a%K‘”(K) + WKW = 0, @2.14)
%K(z)(lq, ko) + vl + K2)2K(2)(K1, K2)
- %(h F KV KV k) = 0. (2.15)

(.%K(a)('ﬁ, Kz, Ks) + V(K1 + k + K3)2K(3)(K1, Ko,y K3)

=Lt o+ DKV KD o, )

+ K(l)(Kz)K(z)("m ) -+ Km("a)K(z)(Kn k)] = 0.
(2.16)
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In our paper dealing with the regime of large
Reynolds number (Ref. 11), the term 2ix,(K® - K‘)
on the right-hand side of Eq. (2.14) is retained.
This is because of the emphasis in that paper on
results involving the nature of the energy spectrum
function; it is shown there that energy conservation,
in an approximation based on the kernels K and
K™, requires the retention of this term. However,
the emphasis in this paper is more directly on the
kernels themselves, and the term in question, being
of higher order than those retained, is seen to result
only in a negligible correction.

It will be a necessary condition on our solutions
to these Eqgs. (2.14)—(2.16) that, when they are
substituted into the neglected terms, the values of
the latter do indeed approach zero with increasing
¢ relative to the terms retained.

The equations can be solved successively, since
the inhomogeneous part of each equation depends
only on the solution of the preceding one. In fact,
we have here the basis for an iterative scheme which
can, at least formally, lead to exact solutions, but
we shall solve only to lowest order. The solutions
will depend on the initial values of the kernels.
We designate the initial values by the symbols
K, K®, and K{¥.

Straightforwardly solving the successive equations
in terms of arbitrary unspecified forms of the initial
values of the functions allows us to characterize
the forms of the right-hand sides more exactly,
leading to the general form (for all three equations)

i 2

[3 + p(z x)) :IK(”(x, t)

a¢ =1
= 2 (%) exp [—rg (Wt — A W], ©=1,2,3.

” (2.17)

The right-hand side is the nonlinear term of the
preceding equations, more exactly specified. The
functions %, depend on initial conditions, the g, on
the linear operators of the preceding equations, and
the f, on both. Writing the general result down at
the outset in this way allows us to investigate the
problem of initial conditions. These, as we have
said previously, are to be chosen with an eye to
physical reasonableness and so as to satisfy the
requirements of decreasingness of the successive
terms of the expansion of % and of the nonlinear
terms of the equations of motion.

The complete solution of (2.17) is

K(i) — K(i) + K(:)
which is the sum of the complementary funection
Konm(®, 1) = KiP() exp [—o( 2 a)’],  (2.18)
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and the particular integral
| K@, 8) = 20 exp [—h° ()]

X f exp [—o( X 0t — 1))

D 03) exp [— A (x
X exp [—vg; (W'} dV = 'E f;[((z) i)2p£ g’;;)(i))]]

X lexp [—rg(0)#] — exp [—v( 2 0’} (2.19)

The Gaussian form of the exponential function
in the solution of the homogeneous equation, Eq.
(2.18), with variance proportional to ¢ *, along with
the fact that the equation for K*’ is homogeneous,
means that the time dependence of all the inhomo-
geneous terms in the equations is of the same Gauss-
ian type (i.e., having variance proportional to ™),
and therefore that all solutions are also linear com-
binations of functions of this type. The assumption
that we are working in the decay stage therefore
means that the initial values of the solutions contain
multivariate Gaussian functions of the x variables
in every term. Moreover, with increasing {, any
factor in the solution which converges less rapidly
in x than the Gaussian is dominated within the
region of x where the Gaussian is appreciable, by
the lowest terms of its Taylor expansion.* Since we
are working only in the region of late decay, we
therefore assume a homogeneous combination of
powers of the x variables as the coefficient of the
Gaussian term in the initial value of each K.

The above assumptions determine the initial value
of K as

KPW = A@™e ', (2.20)

where A is real; the factor ™ is inserted in order
to make K (z) a real function. The constant [ is
in the lowest approximation half the correlation
length of u{z) at ¢ = 0. [To see that 2 is the correla-
tion length, we note that the expansion of the cor-
relation function in terms of the K’s is

w@ulz + 7))
= (2m~} f e KV W) dk + 2(2m)7"

X [t D, )y des+ 620 2:21)

X fe-i(n+x.+n)r IK(3)(K1’ Ka, Ks)lszl ngdKa"l" “oe

If this may be approximated by the first term,
Eq. (2.20) gives

uEu(z + ) « e, QE.D.]
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Thus our calculations are valid only at a stage late
enough to be characterized in lowest approximation
by a single correlation length. If the time origin
is late enough in the decay period, I becomes propor-
tional to (»T)!, where T is of the order of the time
from the onset of the single-correlation-length régime
to the chosen origin [just as we shali find with the
initial condition just given that the correlation length
of the time-dependent solution is (I* + »)* — ut for
¢t >> I’/v; this condition implies that ¢ is large enough
so that the large eddies have decayed.]

Now consider the second-order kernel. We have
chosen as initial condition

K&k, k) = Blilky + x)]" "0 (2.22)

In this case, the remarks preceding Eq. (2.21) do
not determine a unique initial form for the funection.
They merely require that the polynomial factor be
homogeneous in the x; and that the exponent be a
quadratic form in the ;. The particular form above
represents a simple and somewhat restricted choice,
arrived at as follows: The form of the homogeneous
operator for K suggests that (x, + «,) replaces
« when we go from K to K®; this leads to the
polynomial factor (k; + «.)". The quadratic form
in the exponent, on the other hand, cannot simply
be (x, + k.)® since this would not allow integrals
over x, and k. of K® or its powers to converge
[see Eq. (2.25)]; such convergence requires that the
exponent contain the sum of the squares of two
independent functions of x, and &, with positive
coefficients (which are squared correlation lengths).
The choice made is, again, simple but quite restric-
tive. In particular, it involves only a single con-
vergence length, which has been made equal to that
of the K kernel.

For the third-order kernel we have chosen, in
strict analogy to K%,

Kéa)("u kg, k3) = Clilks + &, + xs)]” gttt
(2.23)
With the initial condition (2.21) the solution of
(2.14) is
KP®%; ) = A@™ e "0, (2.24)

With the initial condition (2.22), the complementary
funetion of Eq. (2.15) is

Koulis, k23 ) = Blila + )] 77 07rmm e,
(2.25)

showing the necessity for incorporating convergence
factors with respect to two independent variables
into the initial condition. From (2.23), we have
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K:ix)nv(’(lv Ka, K3; t)
—_ C[i(Kl + Ko + K3)]p e-l’(x;’+x,’+x.')—vt((.+x.+x;)"
(2.26)
2. Choice of m and n

The choice of the exponents m and » in the initial
values of the kernels is determined by the decay
and the convergence of the series representing the
mean square velocity in terms of the K. We have

(u?> — (K(”, K(l)) + 2(K(2), K(z))
+6KP, K+ ---; (227
where we put a comma in the inner product to

indicate integration over all variables [compare with
Eq. (2.13)]:

(K(M), K(M)) = fK2(x1, Ly, =" x,,.) dxl . d:v,,,

= 2m)™" f |K ki, k2, ==+ kn)|” iy * - dip. (2.28)

We can obtain a necessary condition for convergence
by considering the contributions of K (x; t) and
of K& (xy, k25 t) to (u°) individually and compara-
tively. With (2.24) and (2.25) we find

(K, K = (const) At + &)Y (2.20)
(K compr K gommo) = (const) BT (vt + °/2)""*¥. (2.30)
If (¥’) is to decay, both these terms must decay
individually, and we have

m > —1, n> —1, (2.31)

If (K®, K®) is not to dominate (K, K”) in
the course of time, we must have
(2.32)
Another condition can be obtained by considering

the particular solution of (2.15). Direct inversion
of the operator 8/9¢t + »(x, + «.)* gives

K& = —GAY/)(ak)™ (a + ra) €T

X [e—vi(n'+l¢n’) — e~l’l(x:+n)'].

n = m.

(2.33)

Changing to variables £, = (), ete., we have

(Kéfl, Kéf‘):) = const (Vt)_zm ff (5152)2("'—”(51 + 52)2

X e—(?l’/")(fx’*‘h’)[e"(Ex’+En’) — e—(51+fn)’]2 dfl dfz.

(2.39)

Consider now the smallest integer value of m per-
mitted by (2.31) (we do not consider the more
complicated possibility of noninteger values of m
and 7, since it is possible to solve the convergence
problem without them), namely zero. The integral
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in (2.34) does converge in this case (the integrand
can be seen to be nonsingular, since the bracketed
term approaches £,&, as £,£, approaches zero), but
it approaches a constant as ¢ approaches infinity.
Thus it contributes a nondecaying value to (u’),
not cancellable by any other contribution, which
is not permissible.

Our final choice for m, which ig justified by later
calculations, is the next integer, m = 1. We also
take n = 1, which is consistent with (2.32). It might
seem as if this will fail to provide increasing Gauss-
ianity with time, since it makes (K2 K2 ) which
is the dominant part of (K®, K®), decay at the
same rate as (K, KV) asymptotically in time.
However, the vanishing of (K®, K®) relative to
(K, K) is not a necessary condition for Gauss-
ianity. We adopt as criterion of Gaussianity the
value 3 for the flatness factor (to be discussed in
more detail in See. IIT), admittedly not a sufficient
condition in the precise sense, but one which we
consider sufficient in terms of the precision required
in this context. And it will turn out that the choice
of initial conditions made here does lead to a flat-
ness factor that approaches 3 asymptotically.

The role of K can be considered in a similar
fashion. However, we simply postulate for the expo-
nent in K2 that p = 1, which is analogous to the
choice n = 1 for K. For future reference, we write
down here the particular solution for K :

Kﬁl = —(1/61})('(1 + Ko + K3) e—l’(x,ﬂ+,‘2¢+h,)
X [A(B'I'A2/4V)Pe—”(x”+["""“’1’) — A(A2/4V+3B)
X e—vt(x,+x,+n)n _ (A3/2v) e'"”"’"‘"”*"”)]_ (235)

As with K&, this is obtained by direct inversion
of the linear operator of the equation of motion.
P is a symmetrizing operator as in Eq. (2.12).

C. Self-Consistency of the Approximation Scheme

The self-consistency of our iteration method of
constructing solutions requires that the terms neg-
lected in the equations of motion be small when
evaluated through substitution of the zero-order
solutions into these equations. We do not have a
completely general proof of this as yet, but we show
in this section that at least the leading omitted
terms are small, and are so for a reason which
indicates that the terms beyond them diminish
successively more and more strongly.

The order of decrease is, as mentioned before,
postulated to be determined by the number of
integrations or, secondarily, by the sum of the
superscripts, in a term. By this criterion, the largest
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neglected term in the equation for K™ (x) is
2KV (') - K® (¢, x)). Thus we consider

(K@) KD, )
= const f K’(K + K’) e—(”.”’)(“,”‘ﬂ)

X [—14ae 2" "] dx’ < conste *'*"[const ¢ e ¥
+ const ¢} + const £ + const £ %’], (2.36)

where
=1+ 4B/A>. (2.37)

The < sign in (2.36) is obtained by discarding I*
in the result of the integration.

The form of (K‘.K®) as displayed in (2.36)
is such that the desired negligibility compared to
K™ cannot possibly be of a pointwise nature. This
is because of the more slowly-decreasing (with «)
exponential in its three last terms, which makes
them larger than KV for large «. [It follows that
our representation of the energy spectrum converges
the more poorly, the larger the wavenumber.] How-
ever, the observable results being treated here are
not the individual values of the K, but integrals
of products of them. Hence, the criterion of magni-
tude of a term is more accurately taken as the
integral of its square—essentially its average be-
havior over the domain of x. This recognizes that
the important region of x, due to the Gaussian
factor, is that in which its values are of order (vt)%.
Since « may be measured in units (v£)7}, it may be
inferred from (2.36) by simple dimensional considera-
tions that the integral of the square of this nominally
leading term of the omitted part of the K"’ equation
behaves, for large £, homogeneously as ¢~*/*. This is
to be compared with a value of ¢*7/* for the second
term in Eq. (2.14), and is seen to provide the
necessary ‘‘convergence”’ for the omitted term
according to the assumed criterion.

As a check on this result, one may easily find
the first iterative correction to K’ by substituting
the solution of (2.14) into the first omitted term,
treat it as an inhomogeneous term in the differential
equation, and evaluate its contribution to K© by
applying the inverse of the operator on the left-hand
side of (2.14) to it. When the result is combined
with the zeroth iterate, the added contribution to
the integrated square behaves as ¢! times the
integrated square of the zeroth iterate alone.

The results of the last two paragraphs may be
summed up by saying that the first omitted term
in the equation of motion of KV behaves as ¢}
times the term retained, and when treated as an
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inhomogeneous term in the equation gives rise to
a contribution to the solution which behaves as
£t times the zeroth iterate. This conclusion would
also follow if each « factor in any expression were
treated as implicitly proportional to ¢*, as would
follow by dimensional reasoning from the form of
the exponent of the Gaussian.

We now turn to the omitted terms of the K
equation, and find the integrated-square estimate
for their magnitude. Formally, the largest of these
terms are, omitting irrelevant constants,

(a + k)E P (=r1, ') KP(ko, &) = Fliy, ko) (2.38)
and
(Kl + Kz)(Km(K')'K(?’)("'; K1y Kz)) = G("n Kz)-

For reasons which will appear, it is necessary to tie
our considerations to the restricted applications of
this paper, which consist of the calculation of the
inner products (K, K), where 7 = 1, 2, 3;
((K(l) _K(2)) . (K(l) _K(Z))); and (K(I)K(I)K(l)’ K(3)).
The complete solution of Eq. (2.15) is, for large ¢,

K® (@, ) ~ i(A%/4)(x + «/)[—e CHHID D

+ ae—(vl+l’)(K’+x")—27hu:”

(2.39)

(2.40)

where a is the same as in (2.34). Considering now
(k1 + Kz)sz(Ku k2) = H(xy, Ks), (2.41)

which appears in the second term of Eq. (2.15), the
two terms in brackets of (2.40) contribute different
values to the integrated square | H?(x,, k.)dk; ds:
The first gives ¢*, while the second gives ¢™"/%.
This is because the first term of (2.40) is Gaussian
with variance proportional to ¢~ with respect to
both of any two independent linear combinations of
x: and «,, while the second is so only with respect
t0 &k, < k., while being Gaussian with variance
proportional only to I* with respect to x, — k..
Thus the retained terms in Eq. (2.15) decrease as
7% in the integrated-square sense. The largest
terms of F(k, k) and G(x,, k2) in this sense turn out
to decrease as ¢ />, hence their decreasingness is
satisfactory as long as the integrated square is an
appropriate measure. This is the case for the mean-
square value of u(z, t), to which K® contributes as
(K®, K®). On the other hand, K® contributes to
the flatness factor through (K" -K ) - (KV - K®)).
In this inner product the presence of the K"’ factors
provides Gaussian variances proportional to t™* for
both variables, hence the mean magnitudes of cor-
rection terms should be estimated as if such variances
were present in all integrals. From this point of
view we find a controlling magnitude of ¢° for the
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retained term H(k,, «;), and the same is true for
the third term of (2.15); while F and G give ¢ *
Hence this criterion again gives satisfactory de-
creasingness.

The second term in Eq. (2.40) has a mean square
which behaves, itself, as ¢ ¥, which is larger than
that of the first term. Thus it may appear that
for order-of-magnitude consistency, the first term
should be dropped. However, we have just seen
that the two terms contribute in the same order in
t to the flatness factor, hence both must be retained.

A similar treatment of the omitted term 2:P(x, +
ks + ka)(K®-K®) of the K equation leads to
the same quantitative results. We have nothing to
say as yet about (K™ -K™); in the present treat-
ment we consider the first three kernels as a closed
system to the required approximation, assuming that
further work will bear this out.

We are now in a position to indicate the essential
meaning of our result. The method given shows
an underlying feature which not only accounts for
its success, but indicates that it should continue
to give satisfactory results when applied to the higher
neglected terms. This feature is that, dimensionally,
each integration over a x variable behaves as a
factor ¢}, provided this variable has a variance
proportional to ¢ ' in the Gaussian factor (which
always turns out to be the case). Thus the integrated
square of such an integral has a factor ¢™* due to
such an integration. The higher neglected terms all
have two, three, ... integrations over x variables.
If these behave like those we have already con-
sidered, they will indeed be asymptotically small
in ¢ according to the successively increasing sums
of their indices, which are necessarily correlated with
the number of « integrations in the respective terms.
This is the reasoning which we promised to justify,
at the end of the first paragraph of Sec. IIB.1.

1II. CALCULATION OF THE FLATNESS-FACTOR
DEVIATION

A. The Flatness Factor as a Test of the Validity
of the Expansion

1. General Discusison

A very striking experimental manifestation of the
non-Gaussian nature of the velocity field in real
turbulent flow is the rapid increase of the flatness
factor of the nth derivative of the velocity field
with n. The flatness factor of a random variable z
which has zero mean is defined as the ratio of its
fourth moment to the square of its second moment:

alz] = ")/ CRY
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(The square brackets in ®[z] indicate that &, which
is of course not a function of z, is a functional of
z if z is regarded as a function of its parameter
of distribution.)

For a Gaussian z, ®[z] is exactly 3. Although
having this value is not sufficient to make a distribu-
tion Gaussian, since there are an infinite number of
higher moments which must in a Gaussian distribu-
tion obey analogous but mutually independent con-
ditions for their relations to the second moment,
this condition is a sufficient one if the distribution
is approximated through its first four moments.

The Wiener—-Hermite series is by its very form
capable of giving separate expression, through its
higher terms, to the deviations of a random function
from Gaussianity (in the next section we take note
of certain restrictions on this capability). In our
hierarchy of equations the higher terms are de-
termined by the Gaussian term. More completely
stated, the following is true: The higher terms are
determined by: (1) The form of the lowest term, which
is arbitrary within wide limits. K might conceiv-
ably be almost any function, it need not necessarily
be x times a Gaussian, although this is what we
have assumed. (2) The initial conditions on the
kernels, whose influence is never wiped out, no mat-
ter how large ¢ becomes. This is seen in our calcula-
tions of the flatness factor, in which the particular
solution for any kernel contributes to the same order
as the complementary function. Qur “initial condi-
tions,” of course, are applied at a time origin not
earlier than the onset of late decay. They therefore
embody any characteristics the flow pattern may
have acquired during the creation of the turbulence
by the applied forces, which have been turned off
well before our initial instant. If the universal
equilibrium hypothesis is true, our initial conditions
are determined by the form of this univeral equilib-
rium, provided it has had time to set in by the time
the late decay (quasilinear) stage begins. It is in-
teresting that this influence of the form of the flow,
universal or not, at the time of onset of late decay,
persists indefinitely thereafter, through the con-
stants @ and b [see Eq. (3.29)]. (8) The form of the
Burgers equation,

What influence do the above factors have on our
results? The hope on which this work is based is
that the flatness factors we compute do strongly reflect
the influence of the form of the Burgers equation, and
that the Burgers equation in turn is for this purpose
a good facstmile of the Navier—Stokes equation and
thence of expertmental reality. The built-in presup-
positions expressed in (1) and (2) above are potential
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sources of artifacts which might interfere with this
program. As for (1), we have already supplied the
justification of this standard assumption (see Foot-
note 4). With regard to (2), we have already given
the arguments for the naturalness of the general
form of the initial conditions used, in Sec. IIB.2.
There remains, however, within this general form,
the aforementioned arbitrariness of a and b. The
fixing of these constants must wait on the determina-
tion of the form of the Wiener—-Hermite kernels in
the universal equilibrium stage, a problem to which
we address ourselves elsewhere (Ref. 11, and further
work in progress).

Having stated these reservations, we proceed on
the assumption that our methods do provide an
interesting test of the ability of the Wiener~Hermite
expansion to reproduce the experimental effect of
the rapid increase of the flatness factor of the nth
derivative of the velocity field with n. From Eq.
(5.15) of IMS, the flatness factor of the nth deriva-
tive of u(z, ¢) is to first approximation

@[u(n)] o~ 3 + 24[(K(1)(n)K(l)(n)K(l)(n)’ K(3))
+ 2((K(l)(n) _K(2)(n)) . (K(l)(n) 'K(Z)(")))]

X (K(l)(n)’ K(l)(n))—-2 (32)

where

KE9®™ =

8/3x)K P (x — 21, -~ - (3.3)

It should perhaps be mentioned that the flatness
factor we are considering is that of the distribution
of the function u™(z, {) at a single point z, or, in
the language of statistics, that of the “marginal
distribution” of %' (z, t). Thus the question of the
Gaussianity of the joiné distribution, as such, of
the values of ™ (z, ?) for different points z, is not
directly involved. However, the result is very
strongly dependent on this joint distribution in-
directly, particularly on the joint distribution for
two points in the neighborhood of one another, since
the derivative is essentially the difference between
the values of 4 (z, ¢) at two infinitesimally sep-
arated points.

z — ;).

2. Effect of Transformations of the Probability Space
on the Flatness Factor

The present section concerns a matter of a rather
special nature, but one of sufficient importance to
warrant its interpolation at this point. Namely: a
Gaussian random function does not always have
a Wiener~-Hermite expansion whose terms vanish
beyond the second order.

We can prove this, at least up to a point, as follows.
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It will be recalled that H‘’(x) represents a vector
in a certain function space. Let us represent this
vector for the sake of a more descriptive notation
by the symbol £. The infinite-dimensional space of
Z is called its sample space (Wiener space, or “dif-
ferential space’”’). The fact that it is Gaussianly
distributed may be expressed by the statement that
its probability density may be “visualized” as a
mass density having a univariate Gaussian distribu-
tion along any straight line in the probability space
(this means that we are also using the fact that
¢; and £; are independent if 7 > 7). In fact, we may
say more, because all components of £ are identically
distributed and have zero means; thus the probabil-
ity density is also hyperspherically symmetrical
about the origin. Now, £ itself is represented by a
Wiener-Hermite series containing only one term,

£ = f o(x — 2)HP @) de’ = H™(2). (3.4)
We can construct a function of & which is exactly
Gaussian but, at least formally, has an expansion
not at all restricted to the form of a linear functional
of H(z), as follows: Let the & that lie in any
hyperspherical surface centered at the origin be
subjected to a rigid rotation with the surface, but
with the amount of rotation to vary (continuously,
if we wish) with distance from the origin. Denote
the mapping so obtained by £(¥), which is a function
of ¥. Since the density at all points of a hyper-
spherical surface is constant, f(¥) has an exactly
Gaussian distribution. But due to the varying
amount of rotation with distance from the origin,
f is not at all a linear function of &, and its Wiener—
Hermite expansion will contain terms of all orders.

The above is, so far as we now know, not a proof
but only a conjecture, for the reason that we have
not taken into account the well-known effect by
which the probability in Wiener space is found to be
infinitely concentrated in the neighborhood of a
single spherical surface. If only one value of the
radius matters, the above transformation might,
in effect, be no different from a rigid rotation of
the entire space by the value of the rotation at the
surface of concentration of the probability. In this
event, the transformation would be linear, and £(¥)
representable in the form [ K(z, 2 )H'" (z') da’.

If the conjecture were true, what consequences
would it have for our work? No matter how close
to multivariate Gaussian a function might be, its
series might converge very slowly. Thus there is
no guarantee that our criterion of decreasingness is
satisfied by actual solutions of the Burgers equation
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unless they are somehow transformed, even when
they are close to Gaussian. If convergence is poor,
the second term on the right-hand side of Eq. (3.2)
may be large even for a marginally Gaussian variable.
On the other hand, if convergence is rapid, the
random function ¢s approximately multivariate
Gaussian, and the second term on the right-hand
side of (3.2) is a reliable index of the degree of
deviation from Gaussianity.

The above discussion gives some information about
the extent to which our work, from a fundamental
mathematical point of view, tests the reliability of
the Wiener—-Hermite series as applied to flow equa-
tions of the type of the Navier—Stokes equation.
By looking for a rapidly converging series, we may
be restricting ourselves to a special class of nearly-
Gaussian solutions.

B. Calculation of the Flatness Factor Deviations

In this section, we outline the various steps in
evaluating the integrals necessary for finding the
flatness factor. The inner products are all calculated
in the wavenumber representation.

From Eqs. (All) and (A13), 3/0z is represented
by —¢(k; + ks + --+) when operating on functions
of wavenumber variables. We are interested only
in the asymptotic form of the flatness factor, for
which » 3> I>. We can then write down the asymp-
totic formulas

K™ o (=) A e (3.5)
K®® ~ (= 1" (A2 /4)(ky + k)"

S [a D g gt 3.6)
K®™ ~ (=) (43240 (k, + k2 + 1)

X [2 g R P gt el

) 3.7

In these equations, a is as before [Eq. (2.41)],
while b is given by

b=1+4 12B/A® + 24°C/ A°. (3.8)

The inner products in the flatness factor are
simply variations of a single type of integral: the
integrand is the product of a polynomial in several
variables with an exponential function of a positive-
definite quadratic form in the same variables. The
methods used to evaluate these integrals are de-
seribed in some detail in the Appendix, Sec. 2. Here
we merely state the results.

One obtains immediately

(K(l)(n), K(l)(n)) ~ 2—n—%(n + %)' Az(llt)_n_%. (39)



EXPANSIONS IN MODEL TURBULENCE

The other inner products involved in the flatness
factor contain three terms each. We put

:“) = f [kita(ry + xs)(kz + Ks)]”ﬂ

X g Tt at et g diy dxs, (3.10)
;”) = f ["1"2("1 + K3)('<2 + Ks)]ﬂﬂ
X g Pttt xans) g diy dk, (3.11)
én) = f [K1K2(K1 + Ks)(Kz + "3):|n+1
X 6—27t(x,’+x.’+n’+nx.+x.n) dK1 ng sz. (3.12)
Then
((K(l) (n) _K(2) (n)) . (K(l) (n) .K(2) (n)»
~ (A% /165" — 20l + a’I57].  (3.13)
Also we define )
in) = f {"1"2"3("1 + &2 + Ka) r
X e-2vt(x1‘+x.’+x,’) dK1 dK2 dK3, (3.14)
Ién) = f [K1K2K3("1 + & + Ks)]"ﬂ
X e—)t[2:,’+x.’+n’+(x,+n)’l dK1 dK2 sz, (3.15)
én) = f [K1K2K3(K1 + k2 + Ka)]Ml
X e—vl[u’+x.'+x.'+(n+x,+n)’] dK1 ng dKa, (3.16)
in terms of which we have
(K(l) (n)K(l) (n)K(l) (n) K(3) (n))
~ (—=D"A%/24°)[—2I + 3al{™ — bI™]. (3.17)

The results for the I™ are as follows (summations
are over positive integer values, subject to such
further restrictions as may be indicated in individual
cases):

B {(n+1)/2] 1\/n + 1
™ _ (9 2n-7/2 (n + )(
L @1 n.zv.:-o 2g, 29,

Xn+3—g)+3—9)(g+g:— D,
(3.18)

in which [(n 4 1)/2] stands for the largest integer
not, greater than (n 4 1)/2.
K, v+ 1)(n + 1)
4
c.d;d,-o ( (o] dl, d2

X (_1)d,3—}(c+d.)(%[2n + 1 — dl — d2])'
X Gn —c+ dD! Gln + ¢ + &),

I;n) = 2—n—%3—n/2—l(yt)—2n—7/2

(3.19)
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in which (Z + d1> stands for the trinomial coefficient
1y 2

(n+ DYd .\ (n + 1 — d;, — d,)!, and the prime
on the summation sign indicates the restrictions

n even {c even :d,, d; odd, (3.20a)
¢ odd :d,, d, even,
n odd :¢, d;, d, allodd or all even. (3.20b)

;n) = 2—2n~3 (Vt)—Zn—J/z,i‘:1 (n + 1)(’” + 1)(_2)_(¢+d)
¢,d=0 c d

Xn—c+Pw—-—d+Pc+d—HL (3.21)
:ﬂ,) - (2Vt)—2"_7/2 E, (n + 1)([2” + 1 ; Cy — 63])!

€3.Cs 02, C3

(E5) (g om

in which the prime on the summation sign stands
for the restrictions

n even :¢s, ¢; both odd, (3.23a)
n odd :¢,, ¢; both even, (3.23b)
¢+ <mn+l. (3.23¢)
Ién) —_ 2—2n—5/23—1/2(yt)—2n—7/2
"H, n + 1)(” + 1) n—d+lgon—o/2-d
xc;o( . g JeuTes
% ([2n—c+1]), ([2n—2d+1]>' <[c+2d— 1]),
2 : 2 ' 2 g
(3.24)

where the prime on the summation sign indicates
that ¢ is to be summed over even values only.

én) - 2-—3n—4(vt -2»—7/2”2 (n + 1)(7'/': 1)(_1)r+a2r—.

r,8=0 r
Xe+i—-r+9ln+3-9!0—- L

The quantity of interest to us is the deviation
of the flatness factor from the Gaussian value of 3.
We refer to this quantity for brevity as the flat-
ness-factor deviation, and denote its value for the
nth derivative by the symbol ¢,. From Eq. (3.2)
we have

¢ = 24[(K(1) (n)K(l) (n)K(l)(n) K(a))
+ 2((K(1) (n) .K(z) (n)) (K(l)(n) 'K(Z) (n)))]

(3.25)

X (K™ gDy, (3.26)
Defining
™ = 191, (3.27)
where
Ié") - (K(l)(n).K(l)(n))z/A‘i, (3.28)
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we have

¢n = WiAzy-z(Vt)‘i(¢n0 + a’d’nl + a2¢n2 + b¢n3)7 (3‘29)

where

bu = @i/mPBI™ — 2(—1)"I7], (3.30)
bm = Gi/m—6LY + 3(—=1L°],  (3.31)
b2 = (t/m)t-3I7, (3.32)
buz = @t/mH(—1)"" I, (3.33)

The quantities ¢,o, Pn1, Puz, Paz have been defined
to be time independent, and the entire asymptotic
time dependence of ¢, is exhibited in Eq. (3.29)
through the explicit factor ¢ * which appears there.
This rate of decay of the non-Gaussian part agrees
with that found by Moomaw," although he finds
a different dependence on the Reynolds number.
Equation (3.29) also explicitly reveals the depend-
ence of the flatness-factor deviation on initial condi-
tions, since these are expressed entirely through the
coefficients ¢ and b. The values of ¢, -+ ¢, for
n equal to 0, 1, 2, and 3 are given in Table I (some
errors in these results as presented in Ref. 7 have
been corrected here). It will be seen that in the
main they have a tendency to increase in magnitude
with n, but that this tendency is not entirely a
consistent one. The behavior of ¢, itself with in-
creasing n is evidently dependent on initial condi-
tions, and it will not increase with n under all
circumstances,

One obvious test that can be made is to ascertain
the behavior of ¢, in the simple case where u(z, £)
consists initially entirely of a Gaussian term: Then
a = b = 1; the values of ¢,, with constant factors
and the ¢* dependence removed, are shown in
Table II. The increase with n is extremely rapid.
To what extent do our results mimic the charac-
teristics of real turbulence? According to the data
of Batchelor and Townsend,'® in real turbulence ¢,
is slightly negative, while ¢,, ¢3, and ¢; are strongly
positive and increasing in the order given. Since
in the case a = b = 1 of our calculations ¢, is a
small number arising from the linear combination

Tasie I. Values of the ¢.;.

n [} [ 29 P2 B3

0 2.12 —4.90 2.25 0.75
1 5.66 —9.45 3.18 2.28
2 6.70 —8.94 2.97 4 .46
3 14 .44 —12.8 3.12 10.0

15 ;. K. Batchelor and A. A. Townsend, Proc. Roy. Soc.
London A199, 238 (1949); Ref. 2 of this paper, p. 174.
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TapLe II. Values of ¢, fora = b = 1.

n (#/A%)(vt/7) ¥n
0 0.22

1 1.67

2 5.19

3 14.8

of numbers which are large relative to itself, only
a small change in the coefficients—say, a slight
increase in a, or a slight decrease in b—would make
oo slightly negative but leave the others positive
and strongly inecreasing with n. It will also be noted
that with the result we have obtained, the conditions
for posttive flatness-factor deviation (apart from the
slightly negative n = 0 case) and for tncrease with n,
two features found in the experiments, display a
strong mutual consistency.

Since the comparison of our results with exper-
iment is on a speculative basis as yet, we should
sum up the limitations of our accomplishment in
the present calculation: (1) We have not provided
an intuitive basis for the phenomenon reproduced.
(2) We have not investigated alternate choices for
the algebraic factors in the initial forms of the K.
(3) We do not yet know how to evaluate the con-
stants a and b, or their counterparts in a more
general theory, (4) We have oversimplified the
matter of inferring the properties of the Burgers
model from experimental results in real turbulence.
Each of the above limitations suggests an avenue
of future investigation, which we intend to explore.
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APPENDIX

1. Equations of Motion of the Wiener-Hermite
Kernels

The expectation values in Eq. (2.7) are given in
terms of products of & functions in IMS Eq. (4.15).
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We prove that this allows us to transform it into
, 10 .
I K“) (x - x(L)) + 55; ;* C(l) 7, j)

X ZfK“)(x - x;la)’ ..

app

(L) .
T T Xi-ir/2

I+J-L i L )y,
Xx— x )/2)K“)(ﬂf - x§+)(1'—i+l)/2; MR 7 BN

X x — xTHITDA) gD 20 1=0,1,2, - .
(A1)

The terms in this expression are defined as follows:
(L)

x — x'“7 symbolizes a set of ! scalar variables,
z — 2z, -,z — 2®;x — x"77P an anal-

ogously constructed set of (£ 4+ j — [)/2 variables
x — g2 g — gUrToEye 3T is the sum
over all ways of apportioning the individual scalar
variables of x — x'* over two functions K and
K, independently of order or position within the
two functions. C(l, ¢, j) is the number of distinet
arrangements, for a given apportionment, obtainable
by permuting the variables within the individual
functions. The asterisk on the sum over ¢ and j
signifies that the sum is restricted to values of < and j
that satisfy

i+iz2l>2i—4 pe+ =00, (A2

where p is the parity of the indicated arguments.

Equation (A1) is proved as follows: The functional
forms of the expectation values of products of H'’s,
such as appear in Eq. (2.7), are given in Eq. (4.15)
of IMS, which in the case of eontinuous variables
only reads

<H(a)(R17 R2: vt Ra)H(a)(Ra+ly e Ra.,.p) LA H(r)

X (o Bosprt) = 3 TI 8(R: — R),
itTess, st (a3)

pairings

the product over “exogamous pairs (¢, 7}’ being
such that every R on the left side of the equation
appears just once in a § function, and the two R’s
in any & function come from different H’s. The sum
is over distinct ways of pairing R’s in this exogamous
fashion; two pairings are distinet if they cannot
be made identical by a reordering of R’s which
does not divorce a pair. The expectation value
vanishes if no such exogamous pairings exist.

In the case of the expectation value of the product
of two H’s in Eq. (2.7) it is easy to write down a
simplified form for (2.8). Let us write =", z{",

-, z{¥ for the several variables of H, with a
parallel notation for those of H‘”, ete. These var-
iables will also be denoted, collectively, by z”, ete.
It is evident by inspection that

MODEL TURBULENCE 719
(D) (P (IINIT ) (G (DY — ;
HOEHHC @) = 0 E=D g
= 6(X(L) _ x(I)) (l — ’L),

perm (x(L))

“perm x'*’” meaning permutations of the individual

variables of z'’. Hence, in view of the symmetry
of the K, the first linear term of (2.7) is
HEY (x — 2,

)

(A5)

where x — x'* stands for the set of variables
r—aP,z— 2P, -,z — .

In dealing with the triple product of H’s, no
simple expression is possible because of notational
difficulties, and it seems more efficient to reason
directly from (A3) to the expression, analogous to
(A5), which is obtained for the nonlinear term after
integrating out the & functions. In every exogamous
pairing generated by the triple-product expectation
value, ! of the I and J variables are paired with
L variables. The integration over these, due to the
6 function, makes them equal to their L-variable
mates. The remaining (z 4+ j — 1)/2 links of the
pairing are between I and J variables; integrating
over, say, the J variables that are linked with I
variables, the & function simply makes them equal
to their I-variable mates; the integration over the
latter then gives an inner product of the two kernels
with respect to these variables, which, since there
are (2 + j — 1)/2 of them, we denote collectively
by xdrI-ne

As a result of the integrations, then, the number
of L variables in K is ¢ minus ( + j — 1)/2,
the number of I variables paired with J variables,
or (¢ — j + I)/2. Similarly, the number of L var-
iables in K‘” is (j — © + 1)/2.

It follows from the above that one contribution
to the nonlinear term of (2.7) is

1 d ) (L) (L)
Pl . (I+J—-L)/2
5 oz K (:v--x, y " T Zi-j41)72; X—X )

€3 (L)
X K" (x — Trs(i—js+lrsey " T — Ty
; (A6)

provided ¢ and j are values such that this pairing
is possible. The entire nonlinear term will consist
of a sum over such possible values of 7 and j, further
summed, for ¢ and j given, over permutations of
the variables which give other permissible pairings.

One condition on ¢ and j is that (¢ — j + 1)/2,
G—1+4+0/2 and (¢ 4+ j — I)/2 all be integers
in order for the above pairing to be possible. For
this it is sufficient that

pE + 9 = p(D),

X X — x(I+J—L)/2) dx‘T+I-L/2

(A7)
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where p is the parity of the indicated argument.
Moreover, these three quantities must be nonnega-
tive, for which it is necessary and sufficient that
i+ j =12z | — jl. This completes the conditions
on the sum over ¢ and j.

The set of pairings of the variables may be
classified according to the L wvariables that are
assigned to K” and to K'”. We call such an assign-
ment, apart from the positions the L variables
occupy in the functions, an ‘‘apportionment.”
Clearly, different apportionments give different re-
sults, except when 7 and j are equal, and there will
have to be a sum over apportionments, Zm. For
a given apportionment, any further permutations
of the variables obtained by other variations of the
pairing does not change the result, because of the
symmetry of the kernels, since such permutations
only vary the positions of the variables within a
kernel; thus their effect is to multiply the given
term by a constant C{l, 7, j). We do not bother to
evaluate this constant in general because we are
concerned here only with a few sets of small values
of I, ¢ and j, for which its value is readily obtainable
by inspection.

The final result obtained for the nonlinear ferm
is then

149 .
232 ;C(l, 7, 7)

o) L .
X EfK‘(x Tt T T TGmiebise;

app

X x—x"INK D @ — 2y, — 2

X X — x(I+J—L)/2) dx([-lrl-ﬂL)/Z (Ag)
the sum over 7 and j being such that

i+j>l2i—i  pC+ ) =p0. (A0

This completes the proof of Eq. (Al).

Since z appears in Eq. (Al) everywhere in a
difference x — x", it is actually superfluous and
can be eliminated: The integration variables x —
x 12 may be replaced by x“*7T%7% while
leaving the integration element unchanged, without
affecting the value of the integral. Also the variables
x — x'® may be replaced by x‘*’; under this
transformation 8/dz transforms as follows:

i

;}a(x_x)f(x

(L)) <L>)

3
- fx—x
oz (Al11)

3
— é 5}; &™),
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The equations of motion then become

[ S e+ 5 (B k)

=1 8Z, =1 9z,

) .
Tty Ti—geiyse;

X Treti ) T [ KO,

BDP
T+ T =L /2y (i) £, (L) &Ly,
Xx K @ timiense, o T

X g T+ gy IHI=Dre g (A12)

We prefer to work with these equations in their
Fourier-transformed versions. With later needs in
mind, we introduce here a notation and formalism
for this purpose, which is somewhat more general
than our present purposes require. The Fourier con-
jugate variable of any z is denoted by x, with
super- and subscripts to match the z; the «’s will
be referred to as ‘‘wavenumber variables.” The
Fourier transformation of a function with respect
to any of its variables is expressed by simply
replacing the variables in question by their con-
jugates. If f(x, x®’) has Fourier transform
Fe', x®) with respect to its A variables, we use
the Fourier transformation in the form

e P = fe""m"mf(x““, X)) dx @
(A13)

0, xP) = @) [T, 1) axt,

We also require the Parseval theorem for the in-
tegral of a product of two funetions over some but
not necessarily all of their variables, namely

f Uy, X)1*g(z, x) dx = (2r)~ ¥+ fe-.-(y.,,,,.{,
X (f(—n, ©)-g(t, ) dndl  (Al4)

(asterisk denotes complex conjugate of the function
within the brackets), where & =, ¢ are Fourier-
conjugate variables to x, y,and z, and B8, v are
the numbers of components of n, g, respectively.
The inner product is defined by

U, ©-9(5, 8) = @7 [ [itm, DI*0(t, B dk

= [ U oo, wax,  (a15)
where « is the number of components of ¥, in gen-
eral, but the presence of the minus sign in front
of n in the inner product of Eq. (Al4) is to be
especially noted.
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With these definitions we obtain

[gi +”(; )]K(”( ) = a3 (i:”’)

X Z* C(, 14, ) 2 (K (—«

app
(I+J-L)/2 (€))] (L),
K )K (Kiagimjenrszs “70 K1

“( I+J——L)/2» =

D .
Kei-5+1)/2)

0, 1=0,12, - (A16)

2. Evaluation of Integrals Contributing to
the Flatness Factor

The integrations of (3.10)—(3.12) and (3.14)—(3.16)
leading to the expressions (3.18)—(3.25) were done
in a variety of ways, which are briefly described here.

I, I, I, I” were done as follows: First,
diagonalize the quadratic form in the exponent, if
not already diagonal, by the appropriate orthogonal
transformation of variables. Next, write the integral
in terms of a sum of integrals over the positive
ranges (0, «) only, by changing the signs of integra-
tion variables where necessary. Then transform to
variables x; which are proportional to the squares
of the variables in the diagonalized exponent ob-
tained in the first step, with proportionality con-
stants so chosen as to make the exponent equal
to —(z; + z, + 23). The coeflicient of the expo-
nential in the integrand is then a product of
multinomials in the z,, and these are then expanded
by the multinomial theorem. The terms resulting
from the latter expansion are then evaluated by

the formula
f e dr = k.
0

Only odd half integer values of % occur.

In the cases of I and I, the individual multi-
nomial factors were rather laborious, and for the
sake of simplicity, the diagonalization was done by
completing the square in the exponential (giving a
nonorthogonal transformation) instead of by a prin-
cipal-axis transformation.

The net transformations which turn the expo-
nential into — (z, -+ 2, + z;) are as follows:

(A17)

721
I, 1P : vk = 274,
W, = 274} + 273374, (A18)
(), = —27%d 4 27137Hd;
g = 270 — 27
Gl = 2743 — 273, (A19)
W)l = 27%1;
Wt = 270 — 27,
G, = 278 + 2783, (A20)

GO = 27 — 274,

In going over to positive ranges of integration,
the effect is as follows: Let f(z!, z}, 2!) be the
integrand of I{” in terms of the z variables (not
including the Jacobian). Then

™ = f f f [t o2, =)

+ 1, 28, —zb) + f@ad, —ad, o)

+ f(—al, &, o) + 1}, —a, —2d)
+ f(—ai, ab, —2d) + f(—at,
+ f(—at, —2k, —a))J dz, dz, dzs,

xz; xa)
(A21)

where J = 9(x,, «s, k35)/0(X1, T2, T5).

The values of the I\ are awkward, lengthy
products. We have evaluated them for n from zero
to three. The results are given in Table III, in terms
of the quantities #~% D> /™, where the Y./™ are
defined as the summations only in the above equa-
tions for the I{™; for example,

E{(n)

In Table III, the values given in terms of products
of powers of whole numbers were evaluated by hand.
Those given in decimal form were evaluated, from
the formulas given, on the Boston University Com-
puting Center 1620 computer.

— (2yt)2n+ 7/ZI{n) )

TaeLE ITL. Values of #—33/; ™),

J
\ 1 2 3

4 5 6
nN\
0 2-2 2-2.3-% 3.2+ 0 —~2-3.3—2 —9.2-09/2
1 2-3.32 2-3.371.13 2-8.32.17 274.32 2-1.3-2.13 3¢.2-0.17
2 2-6.32.41 2-8.38.17 3.4871 277.34 —2-2.17 —33.29
3 276.32.5.181 42.031 44 .575 2-8.34.5.37 74.722 903
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Algebraic Tabulation of Clebsch—Gordan Coeflicients of SU, for
the Product (A, 1) ® (1, 1) of Representations of SU,*
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Department of Physics and Astronomy, Universily of Rochester, Rochester, New York
(Received 7 Qctober 1964)

An algebraic tabulation is made of the Clebsch—Gordan (CG) coefficients of SU/y which oceur in
the reduction into irreducible representations of the direct product (3, ) ® (1, 1) of irreducible repre-
sentations of SUs. Full explanation is made of the method of handling the complications associated
with the possible double occurrence of the representation (), p) itself in the direct product. The phase
convention employed is an explicitly stated generalization of the well-known Condon and Shortley
phase convention for SU,. The relationship of the CG coefficients associated with the direct product
(1, 1) ® (A, p) to those coefficients already mentioned is also exhibited.

1. INTRODUCTION

HE purpose of this paper is to offer a manage-

able and internally consistent algebraic tabula-
tion of certain Clebsch~Gordan (CG) coefficients of
SU, for use in connection with the octet version’
of the unitary symmetry theory. The CG coefficients
we are concerned with are those that occur in the
reduction of the direct product representation®

()‘s tu) ® (1; 1), (11)

of SU,. The product (1.1) contains the following
irreducible representations® (IR) of SU,:

(I) (\+2, u—1) once unless p=0;

(II) (\—1, p—1) once unless x=0 or p=0;
(II1) \—2, u+1) once unless A=0 or A=1;
aAV) (A +1, u+1) once;

(V) (\—1, u+2) once unless A=0;

(VI) (\+1, x—2) once unless p=0 or u=1;
(VID) (A, w) twice unless A=0 or u=0;

onee if A=0 and x>0 or if
A#=0 and u=0;

not at all if A=u=0. (1.2)

Our notation for the corresponding CG coefficients
of SU, is a generalization

COwp 11 Ny'y; IMY JNZ I'M'Y"), (1.3)

for SU, of the notation C{(§,.f; m.m.m) employed

* Research supported in part by the U. 8. Atomic Energy
Commission, .

t Present address: Department of Physics, Syracuse Uni-
versity, Syracuse, New York. . .

1 Péesent address: Institute for Advanced Studies, Dublin,
Ireland,

1Y, Ne’eman, Nuecl. Phys. 26, 222 (1961); M. Gell-Mann,
Phys. Rev. 125, 1067 (1962); S. Okubo, Prog. Theoret. Phys.
(Kyoto) 27, 944 (1962). )

2 We use the highest weight notation for IRs of SU,,
See, for example, A. J. Macfarlane, E. C. G. Sudarshan, and
C. Dullemomf Nuove Cimento 30, 845 (1963).

# D, Lurié and A. J. Macfarlane, J. Math. Phys. 5, 565
(1964). We refer to this paper as LM in what follows.

by Rose* for CG coefficients of SU,. In (1.3), the
labels A and i’ refer to the seven cases listed under
(1.2). The labels I, M, and Y are respectively the
isospin, z-component of isospin, and hypercharge
labels of states of (A, u); the labels JNZ and I'M'Y’
refer similarly to (1, 1) and (\’, '), respectively.
The label v is effective only in Case (VII), where
it is associated with the double appearance of the
IR (A, p) in the product (1.1).® Its precise signif-
icance is as follows. Whenever (\, x) occurs twice
in the product, it follows that we can construct two
independent sets of orthonormal basis states [AulMY)
out of products of basis states of (A, u) and (1, 1).
Clearly we can arrange by use of the Schmidt pro-
cedure that the two sets of states be mutually orthog-
onal, We employ the notation AulMYwy) where
v is a label that takes on two values, v = 1 and 2 say,
for such mutually orthogonal sets of basis states,
and the notation

COw 11 \uy; IMY JNZ I'M'Y)  (14)

for the corresponding mutual orthogonal sets of CG
coeflicients. However, there remains considerable
arbitrariness in the definition of such coeflicients.
We can make an arbitrary orthogonal transforma-
tion with respect to v on some given sets of states
Au IMY «) and thereby obtain new sets of states
of the same type and hence new sets of coefficients
of the type (1.4). We resolve this arbifrariness by
a method suggested by Biedenharn.® Herein, one
demands that one of the sets of CG coefficients (1.4)

4 M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).

¢ For a general discussion of the definition of CG coef-
ficients for groups for which the direct product of two IRs
may contain certain IRs more than once in its reduction, see
M. Hamermesh, Group Theory (Addison-Wesley Publishing
Company, Reading, Massachusetts, 1962), Chap. 5. See also
A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan,

J. Math. Phys. 5, 575 (1964).
8 L. C. Biedenharn, Phys. Leiters 3, 254 (1963).
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vield the matrix elements of the generators of SU,
in the IR (A, u) interpreted in the light of the
Wigner—Eckart theorem for SU;. We attach the
label ¥ = 1 to the set of CG coefficients (1.4) con-
structed according to this criterion, and determine
the vy = 2 set (to within a phase) by orthogonality.
Since Case (VII) involves two sets, it follows from
(1.2) that we have to obtain and display tables of
eight sets of CG coefficients (1.3) of SU,. It can
be proved, however, that the CG coeflicients (1.3)
factorize” according to

COw 11 Nu'y; IMY JNZ I'M'Y")
= CUJI'; MNM') UG 11 Ny/y; IY JZ I'Y"),
(1.5)

where C(IJI'; MNM’) refers to the isospin SU,-
subgroup of SU;, and the isoscalar factor U(---)
is independent of M, N, and M’. Hence, CG co-
efficient of SU, being well-known, we need only
tabulate isoscalar factors.

Of vital importance in connection with our tables
is the provision of a clear and complete statement
of the manner in which we have disposed of the
arbitrariness of phase that exists in the definition
of the CG coefficients (1.3). Since our phase conven-
tion is essentially a generalization of the Condon
and Shortley phase convention for CG coefficients
of 8U.,, it is convenient to begin by giving Messiah’s
statement® thereof. This involves the two require-
ments:

(@) Gm+1lJ.]jim), real and nonnegative,

real and positive.

Requirement (a) fixes the relative phases of the set of
all CG coefficients of SU, of the form C(j,f.j; mymom)
for any nontrivial ordered set of allowed values 7, 7,
and 4, and requirement (b) then fixes the absolute
phase of one canonically selected member of each such
set, Similarly a full statement of our phase conven-
tion for CG coefficients of SU; divides into two parts,
the first relating to relative phases of the set of all
CG coeflicients with a given nontrivial ordered
triple of IR labels and the second fixing the absolute
phase of one suitably selected member of each such
set. For the first part of our phase convention, we
adhere to the phase convention of Biedenharn® re-

7 G. Racah, Phys. Rev, 76, 1352 (1949); A. R. Edmonds,
Proc. Phys. Soc. London A268, 567 (1962).

8 A. Messiah, Quantum Mechanics (North-Holland Pub-
lishing Company, Amsterdam, 1963), p. 1055.

¢ L. C. Biedenharn, Phys. Letters 3, 69 (1962).
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garding the matrix elements of the generators' of
SUs,. This involves two requirements:
(A-1)
Ou IMA1Y |1 A IMY),
real and nonnegative, or equivalently
Qu IMF1Y |1, €\ IMY)
= C(I1I; M1 M+1) (D),
with f(I) real and nonnegative;
(A-2)
Qu I+t M43Y |F |z IMY)
= C(I3 I+3; M3 M+1) f.(wm IY), (1.7)

with f.(AulY) real nonnegative functions of the
indicated arguments. It is important to observe that
(A-2) differs from the demand'' that the matrix
elements of F. all be real and nonnegative, since
C{I3 I—%; M% M%) is nonpositive. To give our
generalization for SU, of statement (b) for SU,,
we must consider the CG coefficient

(1.6)

COw 11 Ny'y; IIV JNZ PI'PY),  (1.8)
where ITY refer to the highest weight states of (A, ),
ie, I = 10\+u), ¥ = 3(—p), and I'I'Y’ refer
to the highest weight state of ()/, u’). In each of the
cases (I) to (VI) above, there is only one value
of J for which the CG coefficient (1.8) does not
vanish identically.’* Further, in each case, the CG
coefficient (1.3) with this value of J does not vanish
accidentally' for any (A, u). Accordingly, in Cases
I@) to (VI), we may demand that the CG coefficient
(1.8) be real and positive. In Case (VII), however,
the values 1 and 0 of J can each yield nonvanishing
values for the coefficients (1.8). It might seem
natural to demand that the coefficients

CQw 11 Ny'y; ITY JOO ITY)

with the higher value of J be real and positive.
This prescription is indeed satisfactory for the y = 1

1® We use the notation of LM for the generators of SUs.

11 The derivations of the matrix elements of the generators
of 8U; by M. Harvey and J. P. Elliot, Proc. Roy. Soc.
London A272, 557 (1963) and K. T. Hecht. SUsreduction
coefficients, fractional parentage coefficients ete., University
of Michigan preprint, 1963, contain this alternative phase
convention to our A2, The derivations of D. L. Pursey,
Proe. Roy. Soc. London A275, 284 (1963), and of N. Mukunda
and L. K. Pandit, J. Math. Phys. 6, 746 (1965), employ
the phase convention of Biedenharn.

12 We say a CG coefficient vanishes identically if it
vanishes because of a selection rule either on its IR labels or
on its internal quantum-number labels. A CG coefficient is
said to vanish accidentally if the vanishing is not a result of
& selection rule.
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TasrE 1. The isoscalar factors of the CG coefficients of SU; which occur in Eq. (1.9).
W, u) J, Z) U 11 Nu'y; IV JZ T'Y)
]
- 1 ol
o M+ )+ p+ 1) ]*
G =1u=1 (1,0 [(H D+ DO+ s+ D0+ 5 =1
3 . A= DO+ p+ 1" T
G-2p+d G- [(x+ DO+ A0+ + 2)
AN+ 1Lp+D (1,0 1
A 3
N—1up+2 G, -1 [m]
_ N (6= DO+ u+ D T
Gtbe=m o G [t
) 1,0 [ 30+ W+ p + 2) ]*
v =1 ' 4N+ pF + M+ 3N+ 3p)
(\, 1) ©.0) [ 3uAA + p + DA+ + 4)° ]*
Y= ’ 40+ 2 + 2N + 4+ Q" + 4F + M+ 3N+ 3w)

set of CG coefficients, but it breaks down for the
v = 2 set, since C(\u 11 \u2; ITY 100 ITY) vanishes,
accidentally not identically, whenever A = u. Ac-
cordingly in the latter case, we demand that the
CG coefficient with J = 0 be real and positive.
Thus, to summarize the second part of our phase
convention for the CG coefficients (1.3), we demand
(B) that each of the CG coefficients

COw 1A NF2u—1; ITV 3 3 1 I+3 143 T+1),
COw 11 N—1p—1; IT

COw 1L A—2u+1; [TV 3 —% —1 131~ V-1),
COw 11 AF+1pu+1; IIV 110 T+1 I+1 7),

COw 1l N—1p4+2; IV 1 3 -1 T+3 I+3 V1),
COu I NF1p—2; TIV 3 —31T-3 131 V+1),
C(ve 11 Apl; ITY 100 IIY),

C(e 11 2u2; ITV 000 ITY), (1.9)

be real and positive. The corresponding isoscalar
factors are displayed as functions of X and g in
Table I.

We wish to exhibit that the structure of part (B)
of our phase convention for the CG coefficients (1.3)
appears quite natural when viewed in the light of
known results concerning the Clebsch—Gordan series
of SU,. First it is to be noted that each state of

the IR (1, 1) of SU; is mentioned once and once
only in the set (1.9) of CG coefficients. Further,
states belonging to simple weights occur in associa-
tion with those IR (\’, u’) which occur only once
in the product (1.1), and the two states belonging
to the double weight I, = ¥ = 0 occur in association
with the two occurrences of (A, u) itself in the
product. In other words, in statement (b) we have
put the states of the octet in 1:1 correspondence
with the irreducible constituents of the direct prod-
uct (1.1). Thus we have, in an explicit and slightly
sharpened form, a special case of a lemma due to
Biedenharn.® Alternatively we may say that state-
ment (B) illustrates the fact that addition of the
highest weight of (A, u) to each weight of (1, 1)
exactly yields the highest weights of each irreducible
constituent of the product (1.1), at least [compare
with (1.2)] for A and u large enough. This fact how-
ever is simply the principal on which Speiser’s
method™ for the reduction of direct products of IRs
of SU; depends. It appears that generalization, to
the CG coefficients associated with an arbitrary
direct product of IR of SU;, of part (B) of our
phase convention must rest heavily on Biedenharn’s
lemma. It is hoped that this generalization can be

given in a future publication.

13 D. R. Speiser, Proc. Istanbul Summer School, Istanbul,
1962, (to be published). See also Sec. 12 of J. J. deSwart, Rev.
Mod. Phys. 35, 916 (1963).
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The discussion so far has been concerned with
those points regarding the CG coefficients (1.3) which
are of basic theoretical importance. Those technical
details of the actual evaluation of the coefficients,
which may be bypassed by the reader who wishes
only to understand the nature of and make practical
use of our tables, are given in Sec. 2. In order to
increase the scope and practical utility of our re-
sults, it seems desirable that we show how to obtain
from the CG coefficients (1.3) explicit formulas for
the CG coefficients

COAlMuNu'v; INZ IMY I’'M'Y’). (1.10)

Discussion relating to this question is given in Sec. 3.
We present our formulas for the isoscalar factors

U 11 Ny'y; IY JZ I'Y") (1.11)

in Table II, which has been divided up into eight
parts because of the complexity of various of the
entries. Parts 1 to 8 exhibit the isoscalar factors
(1.11) with (JZ, I'Y"), respectively, given by

(10, 1Y), and (00, IY). The order of the rows of
each of Parts 1 to 8 of Table II corresponds exactly
to the order of the lines of (1.2) with v = 1 before
y = 2 under case (VII), and the order of the eight
parts of Table II can be regarded as being exactly
the same in the light of the correspondence referred
to below (1.9). Associated with each isoscalar factor
UQw 11 Ny'y; IY JZ I'Y’) is the real phase x by
which it must be multiplied in order to yield the
isoscalar factor (ef. Sec. 3) U1 AuNu'v; JZIY I'Y').
We have followed this procedure because a general
expression for x in terms of A, g, 7, Y, ete., has not
been obtained.

We conclude this section with a brief survey of
previous work on CG coefficients of SU;. Various
authors have made numerical tabulations, namely,
Sawada and Yonezawa,'* Edmonds,” Rashid,*
Dothan and Harari,'® Tarjanne,"” deSwart,'® and
MecNamee and Chilton.'® The first-named source
provides CG coefficients such as are used in connee-

%8 Sawada and M. Yonezawsa, Progr. Theoret. Phys.
(Kyoto) 23, 662 (1960). )

15 M. A. Rashid, Nuovo Cimento 26, 118 (1962).

18Y, Dothan and H. Harari, Israel Atomic Energy Com-
mission, Report IA-777, Soreq, Israel, 1963, unpublished.

17 P, Tarjanne, Carnegie Institute of Technology Report
NYO 9290A, Pittsburgh, 1963 (unpublished). See also P,
Tarjanne, Ann. Acad. Sci. Fennicae, A VI Physica, 105 (1962).

13 P McNamee and F. Chilton, Stanford University Pre-
print, ITP-126 (1964).
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tion with the Sakata version' of the unitary sym-
metry theory. Of the other tabulations, all of which
relate to the octet version' of unitary symmetry,
that of deSwart is the most extensive. Unlike some
of the earlier tabulations it is given in association
with a clear (but not quite complete) statement of
its phase convention, which however differs from
the present phase convention in that it uses, instead
of (A-2), the same alternative to (A-2) as was used
by Harvey and Elliott,'* and by Hecht." In addition
to the numerical compilations just noted, there is
the algebraic compilation of the CG coefficients of
SU, for the products of (A, u) with (2, 0), (0, 2),
(4, 0), and (2, 1) made by Hecht'" for use in connec-
tion with the work of Elliott* on the nuclear shell
model. Further, Moshinsky™ has obtained an al-
gebraic expression in the form of a finite series
for the CG coefficients of SU; for the product
M\ 1) @ (x, 0).

Note added in proof: Pandit and Mukunda, “Al-
gebraic Tabulation of Clebsch-Gordan Coefficients
of 8U; for the Product (A, p) & (3, 0) of Rep-
resentations of SU,,” University of Rochester Re-
port UR-875-73 (to be published), have recently
obtained results closely related to those of the present
work. They have used the same phase conventions
as are employed here.

2. METHOD OF EVALUATION

In LM we introduced a set of operators 9, 4.,
Y, ., and G.. These operators form a (nonstandard)
set of components of an octet operator of SU;, since
they transform under SU; exactly as do the gen-
erators I, I., Y, F., and G, of SU,, i.e., according
to the octet IR (1, 1). In LM, an evaluation by
a purely algebraic method, of all the matrix elements
of these operators was performed.”® The results
viewed in the light of the Wigner-Eckart theorem
of SU, are the basis of our determination of the
CG coefficients (1.3) of SU,.

The first step of the analysis is to replace the
set of components of an octet operator of SU, by

18 8. Bakata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1056);
Y. Yamaguchi: Progr. Theoret. Phys.( {I{yot%)) Su p{ 1'156%’
37 (1960); M. Tkeda, 8. Ogaws, and Y. Ohnuki, Pm’grf
Thggre}. l;hy%}ngligetlg) 22,R‘715 (SIGGO%‘;‘OZg, 1073 (1960).

. P io roc. Roy. X
562“(%:3{581{;1 o s Ny y. Soe ndon A245, 128,

. Moshinsky, Rev. Mod. Phys. 34, 813 (1962).
also M. Moshinsky, J. Math. Phys. 4, 1138 519633 4?:3
“Group Theory and the Many Body Problems” %o be pub-
lished in Physics of Many Particle Systems, edited by E.
Megr(I)g (G_orc}on arid Iilreachi) New York, 1964.

entical results have been obtained by N. Muk
and L. K. Pandit by the tensorial method dej;cribed ]iln %ﬁgﬁ-
recent paper.m
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TasLe I1. The isoscalar factors U{Ap 11 Nu'y; IY JZ I'Y’). We use the following abbreviations:
ze=l+4Y,y=1—-3Y,p=(\~—pu)/3 ¢=00+2)/3 r=(2x + u)/3,

Ioo= (M 4 6 + M+ 3N 4+ 36)/9, Ts = (N — )N + 2 + 3)2N + p + 3)/162

The functions I; and I; of A and u are the eigenvalues in the IR (A, ) of SU; of the quadratic and the cubic invariant Cagimir

operators of SUs.

Part 1
N, 6D UQp 1IN py; IV 31T+ 3 Y+ 1) X
=+ v+ Do+ 2+ Do+ 2+ g+ z+2) |

AFr2Zu=D ) T 0 F D0+ D6 DO+ 4+ ) ] (=)

(= =D+ y+ Do +2z+ D —2—1) | '

A =dow—1) “”,u+y+m0+nm+n@+u+n@+u+m] (-+)

=Dyt 1P+ 1+ +2+2c—2c~D]

a-nuty () (AL S e | )

'@+y+@@—y+n@+z+D@+x+mu+x+aT

R T D D L S ) (+)

r— g+ e+ g+ z+Yy+1—pg+1 -9 P
A=Let+2 O [T A )L DE T DuF IO+ k) ] )
(¢~ —Dg—Dp+z+ Do+z+ 2]

Gt Le=d B LI D0+ D0 +at 2 +y + D) ] )
O\, ) ) [tz D= +a+2 ]* =)
vo=1 20+ v+t 3wty + 2
W i 18L,(p + .+ D(g+ 2+ 9 — 2 ! 1_ 3L
y=2 “”.@+y+mm@+mm+m@+p+D@+p+®]&+2 a} +)

Part 2
O, w) Up 11 NMu/y; IY 101 — 1Y) X
(=D =1 —Dg—y+Dg+ot+Der—z+ D=2+
A+2e=0 O T ey DO T DO+ DwF DO T+ D } =)
T =P+ e+t y+ Deta+ D+ |

A=1p=1 “”»w+w@+y—n@+n@+ua+n+no+p+@] (+)

e+ D+ Ddo+z—Dgtz+Dg—y+Der+y+ 1D

A=2p+D )| Groeto— NOT Da+ DATr+2 ] (+)

(p+ Ay —pr—c+ Dr—s+Dg—y+ A —y+ D]
G+ Lut ‘”‘.u+w@+y—na+nm+n0+u+ma+u+m] S
(p+dp+e—Dr—2z+Dr+y+Dg—y+ANg—y+ 1| _
C=Le+d ) T T )ty DO+ D D+ DO F u+ D ] =)
(=Dt Ay —p =D +y+ D —c+ Dg+z+ D]

At+Le-2 (=) | Gt ety = Dula+ DO L DO+ 1+ 2 ] )
N ow 0
¥y=1
O ) (=) Hm@+@@~mm+x+n@—z+nu~y+n@+y+nT )

v =2

E+e+ty— DwA+Ae+ 20+ e+ DO+ s+ 3)
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TasLE II. (Continued)
Part 3
', W) UM 11 Npy; IV —11 -3 Y — 1) X
(= +y+Dg+2+Dor—z+Der—z+9)
At2p-1 (=) | N P ) ] (+)
(¢ — Yo+ @+ e+ v+ Dg+z+ ) _
A =tu-1 “”-u+wo+n@+na+u+na+u+m] =)
(o + D+ 1P +y+DVop+z—Dg+z+ D] _
d=2pt+tD | Cr MO+ DE+ DA+ a2 ] =)
(o + 9+ y+Dg—y+Dr—c+2)r—z+ 1] _
M LetD O T A F De T DO s F IO+ AT 9 ] =)
o+ +z—Dr—z+Dy+1-plg—y+ 1]
CM=Let+d O T T 0T )G Vet 90 Fa+ D ] +)
(e + Dy~ P =N —2z+ Dg+az+ 1)} _
A+Lu=2 ) | o G T 0T D0 L+ D ] =)
O, p+Ng+z+Dr—z4+1 |
y =1 H)&@+MV+J+M+@+mJ )
O\, w 18Lp+ 2)(gF+z+ Dir—z+ 1) 4 1 _ 3L _
y =2 “”[u+wwa+m@+m0+u+D0+u+®]b+z u] =)
Part 4
W, u) U 11 Np/v; IY 101 + 1Y) X
(=)o + 2+ Do +z+ D +2+2c+y+ 20 +y+)] _
AFZu=0 O T T e+ OO+ DA F W+ DO+ s+ D :I )
(= D@ — Yo+ 2+ D —2—Dy+1—pPr—y—1
A= Lw-1 “”_u+y+mu+y+$o+n@+na+u+na+y+m] )
= - +1—-pDy+2—p@+z+29ec—z—1
A=2etD D T T ety MO F VG DO T 4T D ] )
v+ 1—pr+y+9e+y+)ptatDgtztotet+d |
CHLutD D e oGt v+ 90+ DG+ DO+ T D0+t I ] )
(- D+ 1 -+ 22—+ v+ De+c+De+z+3] _
C=Letd ) T T e+ v+ 0+ De F D F D0+ 6+ D ] )
=D~ o+ e+ Do+ 2+ e+ y+Dg—y =D
G Le=2 O T o ety - G F DO F DO+ p T D } (+)
s ) 0
vy=1
™ B (+)me—@w—w@+x+n@+x+m@—p+n0+y+my )
vy =2 +y+de+y+IMA+ D+ 220+ + DA+ + 3)
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TasLE II. (Continued)

NE

Part 5

W, ) UOW 1INy 1Y § — 11+ 3 Y — ) x
eraamy o) [GRREHERC e et | ©
A=Lu=1 —8 R Py ey é?]% )
o-naty o) [BEHELSEE s | )
R e S (e /e s s | ®
I R e ¥ e vk e e | S
R I e T e i coea | ®

A o R ) ©

o [(x T T I T T B R T T »] [z Tyt 313] )

Part 6

', ) Udp 11 Np'y; IY 311 -3 Y+ 1) X
GtZe-1 :(y BRCET e e e e o )
o-rn-n o [EERENEREERERS] =
Rl e e e e e & J| =)
ot raty o (GRS A o eS| )
A=Lu+2d () :(p + x)((fiyx)(ij)(;)(t ij—)(?(j— 5511 1#)(1 R = 2)]% )
orin-a o [SERE | )

N ! i

™\, 1) ) |18 =D =yt De+y+ D) ] [ +1y 313] (=)

vy =2

L(z + M+ D+ DA+ o+ DA+ 5+ 3)
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TasiLE II. (Continued)
Part 7
W, w) UM 11 NMu'y; 1Y 10 1Y) X
_ [ 2=y +Iote+De—a+D | Yo —
C+2e=0 O e e tr+ 20+ Dt DA+ AT ot 2)] [g+1+3—u] )
L T 20¢ — P — D+ y+ Dg+ 2+ 1) Y N _
R Il [Tt st e e e A L URE U IS
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_ [ 2o+ gt + ey +1—pg+1~—y P
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eyt x} “_w+"__ﬂ
Part 8
W, ) Up 11 NMu'y; IY 00 1Y) X
B 3y — P+ y+ A+ 2+ Dr—z+ 1)
AF2u-D ) [T 50 D0 F et IOt 5T 2 ] )
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a certain set of components, MY, or simply Myuy,
which we refer to as a standard set. They are stand-
ard in the sense that their matrix elements—tem-
porarily excluding from attention those of case
(VII}—can be expressed in the form

N MY | nz) M IMY)
= COu 11N IMY INZ I'M'Y') (N ||9n)] e,
@2.1)

where the reduced matrix element is independent
of IMY, JNZ, and I'M'Y’ and the CG coefficient
satisfies the phase convention laid down as state-
ments (A-1), (A-2), and (B) in the introduction.
The results of LM cannot be immediately written
in the form (2.1) for two reasons:

(i) the correct relalive normalization of the op-
erators 4z, 9., Y, §, and G, is as yet undertermined,”

(ii) even after appropriate relative normalization
factors have been associated with them, the func-
tions 94, %Y, ¥, and G tabulated in LM differ from
the corresponding isoscalar factor by a common
normalization factor which in each of the cases I
to VI is a function only of A and u.

We consider point (i) first. From inspection of the
selection rules on IMY obeyed by the operators
92,94, Y, F,, and G, 1t is clear that we must make
associations of the form

Miwe = ay, M =10, —1,
Fu = F9./V2, 8 = 94,
Moo = bY,
Myseyr = Fy,
Mys3m1 = G- (2.2)

We can determine the ratios a, b, ¢, and d by ex-
amination of an appropriate special case of (2.1).
We choose the case of (\, &) = (1, 1) and (\', p') =
(3, 0), and use Eq. (2.2) and the entries of Table I
of LM to evaluate explicitly the left side of (2.1).
We can write the results in the form

(30 I'M'Y" 3, yz] 11 IMY)
= JIMY,JNZ, 'M'Y") (30 ]|, D} 11), (2.3)

where the functions f are known functions of the
indicated arguments, each one containing one of the
numbers @, b, ¢, and d as a factor, and the notation
of LM for the reduced matrix element has been

3 The analogous situation for SU, involves the replace-

ment of the components @, @. of a vector operator by the
spherical components @n (m = 1, 0, and —1).

AND MACFARLANE

used since this need not be the same as (30 [[on]] 11).
We must now compute the CG coefficients

C(111130; IMY JNZI'M'Y")

from first principles,” being careful to impose the
phase convention specified in the introduction. Ac-
cordingly from (2.1), we have a result of the form

UMY, INZ, I'M'Y")
=2 C(1111 30; IMY JNZ I'M'Y").  (2.4)

Herein z is a number independent of IMY, JNZ
and I'M’Y”. It is, in fact, the ratio of the reduced
matrix elements (30 |[(1, 1)|| 11) and (30 [[ont{| 11},
and its presence reflects the fact {ef. (i) above] that
the functions f of {2.3) are not normalized. From
(2.4) we get

a/2 = —b/NV3=0/V2=d/V2 =12z (25)

In the special case of the generators of SU;, the
choice z = 2v3, allows the identifications

My = 1.,/V3 = —E,,
Mo = 1./V3 = H,,
Myo=1,/V3= E,,
Moo = —Y/2 = —H,, 2.6
My, = F./V6 = B,
My =F /V6 = E,
My, = G./V6 = —E_,,
My s =G /V6 = E.,,

to be made, and we adopt it in general.”® We refer
to the components 9;xy of an octet operator, re-
lated to the original components by the “script
analog” of Eq. (2.6), as a standard set of compo-
nents.*® The results of LM under Cases (I) to (VI)
can now be written in the form

2 See Sec. VI D of R. E. Behrends, J. Dreitlein, C.
Fronsdal, and B. W. Lee, Rev. Mod. Phys. 34, 1 (1962), for
8 description of the method of calculation. We always use
the formulas of Biedenharn,® or the transcription thereof
given in Sec. 2 of LM, for the matrix elements of the gener-
ators of S8U/; and hence obtain results differing from those
obtained by these authors and by some signs.

% We have introduced in the third column the Weyl-
Racah?s generators. From the expression for the Casimir
operator I of SU; given by Baird and Biedenharn® in terms
of these generators and Eq. (2.6), we see that we have
I: = Zrgy Mgy Myyy.t .

28 F, Weyl, lecture notes, Institute for Advanced Study,
Princeton, 1935 (unpublished); G. Racah, lecture notes,
Institute for Advanced Study, Princeton, 1951 (unpublished).

27 G, E. Baird and L. C. Biedenharn, J. Math. Phys. 4,
1449 (1963). .

28 Flsgentially the same definition of a standard set of
components of an octet operator has been given by N.
Mukunda and L. K. Pandit.1



TABULATION OF CLEBSCH-GORDAN COEFFICIENTS OF 8U,

W TM'Y |9 nz) Ma IMY)
= CIJT; MNM)M O N IY JZ YY)
O‘,F-I ”(1: 1)” )\,u), (27)

where the functions f are known explicitly in virtue
of the Tables I to VI of LM and the relation of
M ,vz to the original set of generators. The result
(2.7) differs from (2.1) only because the A, u, A’ and
u’ dependent normalization factor necessary to con-
vert the function 9N of (2.7) into an isoscalar factor
U has not been determined, or rather is absorbed
in the reduced matrix element. To make (2.7) and
(2.1) identical, we set

m( : ) = f)\’u‘()‘y ”’) U( : '))
< ,/J‘I ”m“ >‘I‘> = f)\’n’()‘; #)O\'ﬂ, ”(17 1)” )‘/‘>7

and determine fy.,.-(A, u) using the orthonormality
of the isoscalar factors according to

[f\'u’()‘y ”)]2
= > [MOw 11 N IV JZ 'Y, (2.9)

the sum being over IY and JZ at fixed I'Y’. By
judicious choice of I'Y’, e.g.,*

I' =0, Y' = 2(\"—u')/3,

2.8

(2.10)

we easily evaluate the functions fy.,.(\, u) up to
a sign. At this point, the relative signs of all CG
coeflicients within any of cases I to VI are deter-
mined by virtue of our use of the Biedenharn phase
convention (A-1) and (A-2) in LM, and in the der-
ivation of Eq. (2.3). It remains only to impose (B)
to determine the absolute phase of one member of
each set, and the entries in the first six rows of
Parts 1 to 8 of Table II are then accounted for.

We now turn to case (VII), which was explicitly
excluded from the previous remarks of this section,
in order to attend to those complications that arise
as a result of the double appearance of (A, ) itself
in the product (1.1). We employ the standard set
My of components of an octet operator and con-
sider their matrix elements under case (VII), written
in the form

(}\ﬂ I’M’Y’ lmJNzl )\ﬂ IMY)
= >, COu 1l \uy; IMY JNZ I'M'Y")

O o] M), (2.12)

29 That any IR (N, u’) of SU; contains a state (I, ¥) =
(0, 2(\'u’)/3) follows from the general formulas® for the IV
content of an IR of SU; Derivation of the forumlas in
question can be found in C. R. Hagen and A. J. Macfarlane,
J. Math. Phys. 5, 1335 (1964).
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The sum is over the two values 1 and 2 of the index
v which distinguishes an orthogonal pair of sets of
CG coefficients and an independent pair of reduced
matrix elements. Arbitrariness in the definition of
the orthogonal pair of sets of CG coefficients is to
be resolved by the demand that we can give the
matrix elements of the generators (2.6) of SU; in
the form

<>\/.L I’M’Y’ ,MJNzl )\[.l. IMY>
= Cull \l; IMY JNZ I'M'Y")
O [IM]] Mo

This expresses as a formula the corresponding state-
ment, made in the introduction.

By the method of LM, or by use of formula (A.8)
of a paper by Okubo® or by the method of Mukunda
and Pandit,"" we find explicit results of the form

O I'M'Y | Mywz| M IMY)

(2.12)

2
= > MO, IMY JNZI'M'Y’, o)

X u [I(1, D] Mo

It so happens that the results actually obtained
are such that the « = 1 functions already yield
the matrix elements of the generators apart from
an over-all factor. We can immediately find the
¥ = 1 coefficients by finding the normalization
factor f,(A, u) as in cases (I} to (VI) and demanding
that C(Au 11 Aul; IIY 100 ITY) be positive.** This
accounts for the seventh row of parts 1 to 8 of
Table II.

It is convenient for the remaining portion of our
discussion to introduce the notation

v = (IMY), k= (JNZ), v
ko = O [I(L, DI A,
Now Eq. (2.13) can be written as

(2.13)

Irm'y",
1, 2.

o =

Qu o’ | Ap vy = ; M, vk, o)k, (2.19)
and |
fi= kE [T, vk, DI (2.15)
If we next compute
g= ; M(\u, vk, DIMw, vkv’, 2),  (2.16)

30 S, Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1963).

3t Comparing now with Eq. (2.12), we find (\u ||M |[Au): =
(A2 + u? + ur + 3u + 3XN)/9, which is the eigenvalue in
(N ) of the Casimir operator I of SU,%:?". Also the CRs
?f the Lie algebra of SU; can now be given in the concise
orm

[MIIM]Y], MI.M.Y.] = 21 <1]~IMY| MI,M;Y; [1112M2Y2>M1MY-
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we find ¢ to be a nonvanishing function of A and u
but not v”. Hence normalization of the set 91(- - - 2),
ie., dividing by f,

ﬁ = Z [m()‘”rvkvlr 2)]21 (217)
kv

does not yield a set of SU; CG coefficients orthogonal

to the set just comstructed from the functions

M(--- 1). However, it is admissible to rewrite Eq.

(2.13) in the form

O’ |9 M) = 3 OO, ok’ RS, (2.18)
v=1

where
M(--- 1) = Im(--- 1),
’r —
kl =k + xks, (2.19)
M-+ 2) = M(--- 2) — 2M(--- 1),
k; = k2!
and z is determined by the demand that we have
209 (g, ok, DI O, vk, 2) = 0. (2.20)
vk
From (2.19) and (2.20), we get
z = g/(f). (2.21)

We now get the required v = 2 set of CG coeffi-
cients by normalization of the functions /(- -- 2)
given by (2.19) and (2.21). These can be written,
in terms of the original functions 9(--- «) in the
form

C 11 Au2; vko")
= [fiM(u, vkv', 2) — gM(\u, vk, 1)]
X [h(fifs — . (2.22)

This is sufficient to account for the entries in the
eighth row of Parts 1 to 8 of Table II, except for
an over-all sign, which is determined by the require-
ment [cf. (1.9)] that

C(\u 11 Au2; ITY 000 II7)
be positive.

‘3. THE CG COEFFICIENTS FOR THE PRODUCT
1L,1) ® (\p)

We now show how to obtain the CG coefficients
of SU, which arise in the reduction of the direct
product

(1; 1) ® (), l"'); (31)

of IRs of SU;, from those for the direct product (1.1),
whose evaluation has been described above. Clearly,
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the representations (1.1) and (3.1) have the same
IR content so we may here refer to cases (I) to (VII)
in the sense of (1.2). It is convenient to confine atten-
tion, at first, to cases (I) to (VI), which involve
those IRs (\’, u’) which do not oceur more than once
in (3.1), and to employ the notation

v = (IMY), k =(NZ), + = d'MY,
k=110, & = dTY).

We consider the highest weight states

I (@, 15 N, w))
= 22 COw 1L Nw'; k) [\, o) [(1, DR), (3.2)

1@, DO, w); (V)
= 20 CQL M N5 T) [(L, DE) |8, w). (3.3)

Obviously the states (3.2), (3.3) differ only by a
real phase factor

I, DA, w5 NV, w)7)
= &y l(l; 1)()‘; /")7 ()‘,7 F")ﬁ’)'

Further, by applying lowering operators suitably to
(3.4), we can, for any other states |-+ (\, u)v’),
prove the result

1@, DO\ w); N, W)
= €y’ l(ly 1)()‘: I")i O‘,y ”’l)v,>7

involving the same real phase factor e, for all o',
and hence deduce

(3.4)

(3.5)

C1 Ap Xy, kv')

= e, OO 11 Ny'; vko'). (3.6)

The CG coefficients on the right side of (3.6) are
thus determined from previous results and Eq. (3.6),
to within an over-all real phase. For all of the cases
at present in question there is only allowed set of
values v for which C(11 Au Ny’ ; kv?’) is not identically
zero. Since the corresponding CG coefficients never
vanish accidentally for any (\’, '), we may, in direct
generalization of part b of the Condon and Shortley
phase convention for SU, and in agreement with
our discussion of Sec. 1, demand that

C11 A Ny ; ko)

be real and positive. Since CQ\u 11 Nu'; vk¥') is
known, this requirement and Eq. (3.6) allows e,
to be fixed. For purpose of tabulation of results,
it proved convenient to write Eq. (3.6) in the form
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UGu 1l Ny IY JZ I'Y)
= UL M N5 JZIY YY), (3.7)
where®
x = (=" e, (3.8)

and to enter beside each U(Ax 11 \N'y'; IY JZ I'Y")
the value of x by which it must be multiplied to yield
the corresponding U(11 Au Ny'; JZ IY I'Y’). Next
we turn to Case (VII) and the difficulties associated
with the double appearance of (A, u) in the reduc-
tions of (1.1) and (3.1). We again consider the
highest weight states

|()‘r ”‘)(1: 1)7 (X’ )T), 7)
= 20 COw 11 huy; ok) [\, o) (1, DE), (3.9)

where the significance of v is as explained in Sec. 1,
and any orthogonal pair of highest weight states

I(1, DO, w); (N, w3, 8)
= 2 C 11 \u ud; d) (1, DEY |8, ), (3.10)
vk
distinguished by a label & with values 1 and 2, in
the indicated space of product states. By an orthog-

onal transformation of the states (3.10) with respect
to §, we can reach states

(@, DR, 1); O, w7, 7)
such that
1@, DO, )5 O w9, 7)
= ey [ )@ D5 N 05, ), (811)

where 6,,, ¥ = 1, 2, are real phase factors which
are determined appropriately below. Since all states

32 Equation (1.5) and
C(IJI'y MNM') = (= Y+J-I'C(JII', NMM")
have been used.
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of the type |(1, 1)\, 1); (\, w)v, v) are obtained
by applying lowering operators suitably to those of
highest weight, Eq. (3.11) allows the definition to
within an over-all real phase factor, for each value
of v, of all such states and of the corresponding
CG coefficients, for which we have the result

C(11 A Ay kov') = e, CQn 11 Apy; vkv'),

with e,, as before, independent of v, k, and v'.
Essentially what we have done is to use Bieden-
harn’s canonical resolution of the multiplicity prob-
lem for the produet (3.1) to define a cononical res-
olution of the multiplicity problem for the product
(3.1). We can fix the e,, by consideration of the
CG coefficients

(3.12)

C(11 Mu Apy; kvp), (3.13)
which Van_ish identically unless v = (IT—1Y) or
v = (I—11—1Y). We demand that

C(11 Apwpl; 110 IT—-1Y ITY), (3.14)
C(11 Ap nu2; 110 T—-1T—1Y ITY), (3.15)

be real and positive, since, for v = (JI—1Y),
accidental vanishing of the v = 2 coefficient (3.13)
can occur. We can then determine ¢,, using (3.12)
and the known forms of C(\u 11 Auvy; vk?). As above,
we present results by tabulating along with

UQw 11 My IV JZ I'Y)

the factor x = (—)"""""¢,, by which it must be
multiplied to yield

U(11 My JZ IY I'YY).
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It is proved that every density matrix is the limit, in the sense of weak operator convergence, of a
sequence of operators each of which may be represented as an integral over projection operators onto
coherent states (in the sense of Glauber) with a square-integrable weight function. This result is a
special case of one that holds for all operators with trace and for overcomplete families of states
other than just the coherent states. We prove our more general result, at no cost of complexity,
within the more general framework of continuous-representation theory. The significance of our

1965

results for representing traces of operators is indicated.

I. INTRODUCTION

N this note we should like to establish a theorem
pertaining to the representation of quantum-
mechanical density operators as integrals over pro-
jection operators |a) {a| onto coherent state vectors
la). Such ‘“diagonal’”’ representations have been in-
troduced in the context of optical coherence by
Glauber' and by Sudarshan,’ and the latter author
has also emphasized the exceptional generality of
such representations.

In the notation of Dirae, let [n),n =0, 1,2, ---,
denote the energy eigenstates for a harmonic os-
cillator of unit angular frequency. In terms of these,
we define the coherent state

oy = e 5 s ), 0

and its adjoint

@l

for all complex a. These states have unit norm, are
not all independent, but are complete in the sense
that the unit operator may be expressed in the form

e—;lul' g%(nly

1=r7x" f o) {a| &, 2)

where for @ = a, + ia,, we set d’a = da,da;, the
integral extending over all values of «, and «;. The

* An account of this paper was presented at the Con-
ference on Quantum Flectrodynamics of High Intensity
Photon Beams, held at Durham, North Carolina, August 1964.

1 R. J. Glauber, Phys. Rev. Letters 10, 84 (1963); Phys.
Rev. 131, 2766 (1963).

2 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963);
Proceedings of the Symposium on Optical Masers (Poly-
technic Press, Brooklyn, New York and J. Wiley & Sons,
Inc., New York, 1963), p. 45.

form (2) for the decomposition of unity in terms
of the states of Eq. (1) appears to have been first
stated and used by one of the present authors in
applications other than optical coherence.’ By a
double application of Eq. (2), any bounded op-
erator ® admits the decomposition

=" [[ 1) el ® 1) Bl P2 @

However, every function b(a) = b(a,, «;) defines
an operator of the “diagonal’” form

! f b) |o) (a| d°a = ® )

whenever b(a) is bounded (and measurable) or if it
satisfies

f[b(cz)l2 o < o,

Such operators include certain “diagonal” quantum-
mechanical density operators

p=x! /P(a) @) {a| d’a, )

which have enjoyed considerable application in
optical coherence studies.!'*"*'* Furthermore, the
diagonal representation of (5) entails computational
simplifications and imparts a c-number classical
appearance to traces involving normal-ordered op-
erators.” These properties give rise to the question
of how broad a representation is afforded by (5).
While not fully answering this question, we have

3 J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960), Egs.
(4) and (5).

4 L. Mandel, Phys. Letters 7, 117 (1963); Phys. Rev.
134, A10 (1964).

§ C. L. Mehta and E. Wolf, Phys. Rev. 134, A1149 (1964).
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obtained the result embodied in the following
theorem.

Theorem 1. Every density operator p is the weak
limit of a sequence of bounded operators each of
which admits a diagonal representation in the sense
of (4). In particular, this means that for every
density operator p, there exists a sequence of square-~
integrable functions b,(c) such that

alpl2) = lim [ @) (1| @ | 2) d

for all pairs of states [1) and [2).

When b(a) is a tempered distribution, then it can
be found by taking the diagonal coherent matrix
elements of (4) and applying the convolution theorem
to the left-hand side. For some p, however, b(e) is not
a tempered distribution (as shown in Appendix B);
the crux of the theorem is that even these cases
can be handled through a sequence of square-in-
tegrable b,(a). A suitable set of functions b,(«) is
explicitly given in Sec. IT in the course of our proof.
We caution the reader that in general it is nof
legitimate to take the limit under the integral sign
in the statement of Theorem 1.

We should like to emphasize that both the
“diagonal” representation—in the sense of The-
orem 1—and a generally distinet off-diagonal rep-
resentation as in (3) exist simultaneously for a
density matrix. This situation is made possible by
the overcompleteness of the coherent states, and is
roughly analogous to the various ways of represent-
ing a given electromagnetic field by changing the
gauge freedom in the four-vector potential.

Instead of directly proving Theorem 1, we should
like to prove a more general theorem whose truth
implies Theorem 1 and which is the theorem we
actually prove.

Formulation in Terms of Phase-Space Continuous

Representations

Theorem 1 is actually a special case of another
theorem which holds for any operator in the trace
class and for representations more general than those
afforded by coherent states. An operator @ is said
to be in the trace class if, given any complete, ortho-
normal sequence {¥,}, the series ) o, (¥; ®¥,)
converges absolutely. When absolutely convergent,
the value of the series is independent of the ortho-
normal sequence {¥;} and is defined to be the trace
of ®. To define the more general representations we
refer to, we replace the set of coherent states by
the notion of an overcomplete family of states® for

s J. R. Klauder, J. Math. Phys. 4, 1055 (1963).

735

a single quantum-mechanical degree of freedom,’ the
properties of which have been thoroughly studied
elsewhere.? In standard Hilbert-space notation as
used in quantum theory, the members of a phase-
space overcomplete family of states are unit vectors

defined by

Blp, q] = ¢ e, (6)

for all real p and ¢. In (6), P and Q denote irreduc-
ible, self-adjoint momentum and position operators
(we set & = 1), and &, is a unit vector called the
fidueial vector. For any fiducial vector, it has been
rigorously established in CRT IV that the unit op-
erator may be expressed as

1 = [[ alp, Qalp, q1'tp do/2m),

the integration extending over the entire phase space.
Clearly, Eq. (7) is an analogue of Eq. (2). Indeed,
if &, fulfills (@ + iP)®, = 0, and thus corresponds
to the ground state of a harmonic oscillator, then
®d[p, q] differs in an inessential way from a coherent
state; namely, in this case

e *@[p, q] = [27Hq + ip)). ®

However, the oscillator ground state is but one of
all possible unit vectors for which (7) holds true.

Just as in Eq. (4), we may define a bounded
operator @ in the “diagonal” form

& = [[ b, 9alp, q1elp, 41'p da/2r)

for every function b(p, ¢) € L*(R X R) or for every
bounded and measurable function b(p, ¢). This con-
struction holds for an arbitrary fiducial vector &,,
and has been rigorously defined and analyzed in
CRT IV, Sec. 3. Hence, we can generalize the earlier
question concerning “diagonal” representations in-
volving coherent states and investigate operators
exhibiting a ‘‘diagonal” representation for a &, other
than a oscillator ground state. In our generalization,
we are led in this paper to restrict attention to
those &, for which the reproducing kernel

X, q;0,¢) = (®lp, ql, ®p’, ¢D  (10)

never vanishes. This condition is fulfilled for an
harmonie oscillator fiducial vector {[{e | 8) =
exp (—% @ — B|*)}, but there exist many other
choices of &, for which the kernel & never vanishes.
Numerous examples have been found by one of us

7J. R. Klauder, J. Math. Phys. 4, 1058 (1963); 5, 177
(1964), referred to as CRT III.

8 J. McKenna and J. R. Klauder, J. Math. Phys. §,
878 (1964) referred to as CRT 1IV.

™
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(JM) and were cited in CRT III, Sec. 2. We can
now state our more general theorem precisely, for
which Theorem 1 is a special case:

Theorem 2. Consider any fidueial vector &, whose
associated reproducing kernel, Eq. (10), never van-
ishes. Then every operator in the trace class (hence
every density matrix p) is the weak limit of a
sequence of bounded operators each of which admits
a diagonal representation in the sense of (9). In
particular, this means that, if X never vanishes,
for every operator @ in the trace class there exists
a sequence of square-integrable functions b.(p, q)
such that

(9,68 = lim [[ 0., 1@, #lp, 0

X (2[p, q), A)dp dg/2m)
for all pairs of veetors @ and A in Hilbert space.

an

It is perhaps worth remarking that the complete
set of fiducial vectors whose reproducing kernels
never vanish is not yet known; at present the only
examples known are those cited in CRT III. More-
over, any special physical significance such fiducial
vectors may have remains obscure at present.

While both Theorems 1 and 2 have been stated
for a single degree of freedom it is clear that analo-
gous theorems hold for any finite number of degrees
of freedom; for simplicity we confine our discussion
to a single degree of freedom. It is to the proof
of Theorem 2 that the next section and Appendix A
are devoted.

The significance of these results for representing
quantum-mechanical traces is studied in Sec. III.
The reader more interested in this aspect may
proceed directly to Sec. III.

II. PROOF OF GENERAL THEOREM

A bounded operator ® is in the trace class if and
only if it has the polar decomposition

& = XX, (12)

with
61‘ Z 07 (133,)
i Bi < o 5 (13b)

i=1

where {¥;} and {X;} are two orthonormal sequences.’®

® R. Schatten, Norm Ideals oft Completely Continuous
Operators (Springer-Verlag, Berlin, 1960). It should be noted
that Tr ® = $%;1 8{(X;, ¥;). ® is a density operator if and
only if X; = ¥;and 3

j=1 Rj
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Let us assume first that the operator & of (12) can
be written in the form (9) and evaluate the “diagonal
matrix elements” B(r, s) = (®[r, s], ®®[r, s]). It
follows that

B9 = 3 8 X3, 9

= [ b, @) 156 ~ p, s~ 40, O)F (p d/2e) (14)
where we have introduced the definitions
¥i(r, s) = (lr, 5], ¥,),
xi(r, 8) = (2[r, 5], X;),
and have exploited the property
X(p, q;7,8) = e* " VK*r — p,s — ¢;0,0)

of the reproducing kernel [CRT IV, Egs. (5.4b),
(5.6)].

Motivated by the difference form of the kernel
in (14), we examine the existence and value of the
Fourler transform of Eq. (14). The left-hand side
of (14) is integrable and may be integrated term-
by-term'® since

(15a)
(15b)

S8 [ 0ite, i, 9] (@r ds/2m) < 38 < o

i=1 =1

holds in virtue of Schwartz’s inequality applied to
the basic formula [CRT IV, Eq. (3.16)]

[ s, 9w, @ dsj2e) = (x,, 2.

In consequence, we may compute the Fourier trans-
form

B, k) = ff et B(r, s)(dr ds/2n)

of the left side of (14) term by term. According to
the calculation carried out in Appendix A, this re-
sult is

Bz, 1) = %(k, £0,0) 3 Bl ypie, B, (16)
where

J!h'xi(x) k)

[ vt ity + 2) ay
= (X;, Ulk, 2]¥%,).
Here ¢,(y) and x;(y) denote the image in L’(R)

of ¥; and X;, respectively, in the Schrédinger
representation.

10P, R. Halmos, Measure Theory (D. Van Nostrand
Company, New York, 1950), p. 114.
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We now assume that the weight function b(p, @
in (14) is square integrable, which in consequence
ensures that & hag the form (9) and supersedes our
explicit assumption to that effect. With b(p, @) €
L*(R X R), we can Fourier transform the right side
of (14) using the convolution theorem' and equate
the result to B(z, k). Using Eq. (A4) in the special
case {A6d), we find that

Bz, k) = blx, k) |%(k, 2; 0, 0)f". (17)

If we now restriet ourselves to fiducial vectors such
that X never vanishes—a condition we henceforth
assume fulfilled—then (16) leads to

Bid vy, B

b 1) = X 3tk 7:0,0) s)
The numerator of {18},
Ne, B = L, B, 19

is bounded [from Eq. (13) and {A6a)] and square
integrable because the Jy, (2, k) form an orthor-
normal sequence in L*(R X R) and 2.1, 82 < w.
Sinee Kk, z; 0, 0) never vanishes and is everywhere
continuous {of. CRT IV, Becs. 3,5), the denominator
in (18} is bounded away from zero oun every compact
set, However, these conditions on N and X are
insufficient to ensure that

5(55: k) € L*(R X R),

a condition we have assumed in Fourier-transforming
the right side of (14) with the aid of the convolution
theorem. An example is given in Apprendix B of
a b(x, k) & L*(BR X R).

To surmount this difficulty we appeal to the notion
of weak operator convergence,** and try to construct
our trace-class operator ® in that fashion. The
approximating sequence ig of course not unique, but
our example serves to prove our theorem.

Let

x{z, k) = 1;

2} < m,

otherwise,

k] < m,

and set
bo(x, k) = xalw, B)b(z, K). (20)

For each n, the function §,.(z, k) is bounded and
has compact support, hence it is both integrable
and square integrable. Its Fourler fransform

1t B, C. Titchmarsh, Theory of Fourder Integrals {(Oxford
University Press, London, 1848), p. 90,

12 F, Riesz and B, Sz.fNagy, Functional Analysis (Freder-
ick Ungar Publishing Company, New York, 1955), p. 150.
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0, = ] e oo e{252)

is likewise square integrable, which ensures that

dp d
o= [[ o, 03tp, a3ip, 2'(B2) e
is well defined. We now show that
lim (2, ®,A) = (2, ®A)

no®

for all @ and A in the Hilbert space.
From Parseval’s theorem and Eq. (A4) we find

(@, B,A) = f f bu{p, Plalp, ON*(p, g}}*(ﬁ}gg)

= ff bz, EY3e*(k, 250, 0)J% 2z, k>(§%§§)

From Eqgs. (18), (19), and (20) for b, we find

@ 6.4 = [ [ Nz, BT% A, k)(dgj’“). ©2)

Since each factor in this infegrand is in L*(B X B)
the limit of the integral as n — <« exists and is

lim (2, &A) = [ [ e, v, k)(@i”szi).

E ]

To evaluate the right-hand side we substitute in
Eq. (19). Summation and integration may be inter-
changed since

,-S:{ B jt[ W, BVE Mz, B (%@)

< 6 llall 1Al < o,

in virtue of (A6b). Thus, we have from (A6b) and
(12) that

lim (2, GA) = é B, f T g BT 5, @(dxg ;zzg)
= 562, %)X, ),
= (sz [ }; ;sfw,.x;f] A),
= {Q, ®BA),

as was to be shown. This concludes the proof of

. Theorem 2 that ® is the weak limib of the operabor

sequence 8, each member of which had a diagonal
repregentation in the manner of (9), under the
assumption that the reproducing kernel never
vanishes.
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Note added in manuscript: Although we have con-
fined our discussion to weak operator convergence,
the sequence {®,} actually converges in norm.'? From
(22), it follows that

@8 = [[ bete, k) ~ xale, KNG, B)

X (A, Ulk, x]Q)*(dk dx/2r).
®,,) A, then

(97 (631: -

If weset Q@ = (®, —

18— ®IAIE = [[ Bute, ) = xale, KNG, B)
X (A, Ulk, 1B, — ®)A)* (dk dx/27),

which by Schwartz’s inequality and an application
of CRT IV (3.16) leads to

[1®s — BA[* < Nuw [[Bn — ®)A]]-[]A]l,

where
Vo= {[] bt = xete O WG, (%)

Therefore, we find that
(@ — ®)A|/[All £ Nom.

Since the N,, are independent of A, this inequality
implies that

sup [[(@ — @)AL/HAIl = (I8 — Bnl] < Num.

Finally, in view of the square integrability of N (z, k),
the sequence N,, — 0 as m, n — . Therefore,
the sequence ®, converges in norm, as was to be
shown. Moreover, it can be shown that the operators
®, are in the Hilbert-Schmidt class,” and converge
in the Hilbert—-Schmidt norm. In fact,

Tr (B — B)(®n — ®)] = N2,

which will be proved in a subsequent publication.

We thank Professor Sudarshan for a private com-
munication in which the question of stronger forms
of convergence was raised.

ITL. DISCUSSION

Lest there be some uncertainty as to the meaning
of our general theorem, and its application to eval-
uating traces of quantum-mechanical operators, let
us make some additional remarks. If p is in the trace
class and @ is an arbitrary bounded operator then
Tr (p®) exists’ and is always given by

i (¥;, p@¥;)
- Zim [[ 0.6, 04/, 2(22), 3

Tr (p@) =

KLAUDER, McKENNA, AND CURRIE

where

Ai(p; Q) = (‘I’n ‘I’[P; QD(‘I’[?’; 9]7 G'\I’i))

and {¥;} is a complete orthornormal sequence. This
result is a direct consequence of Theorem 2 applied
to each term in the sum defining the trace. It would
be nice to be able to interchange the summation
and limiting operations in (23), but in general, this
is not possible. However, if in addition to being
bounded, the operator @ is itself in the trace class,
we may appeal to the polar decomposition form
for @ to examine (23) more closely. A calculation
patterned after that given in See. II then justifies
the interchange of the summation with the remaining
operations. Thus, in the case that p and & both
are in the trace class we find that

T ) = tim [[ 0.0, 040, 9(B2),  23)

(24)

A(p’ (I) = ’ZI Ai(py Q) = (q:\[p, Q]y @‘I’[P; Q]) (26)
always holds.

It is natural to ask when the limiting operations
on n are unnecessary in all our formulas. We give a
sufficient condition in the important case of coherent-
state representations, where &, is an oscillator ground
state. Since N(z, k), as defined in Eq. (19), is the
uniformly convergent sum of continuous functions,
it likewise is continuous. If in addition the continuous
function b(z, k), defined in Eq. (18), is bounded
by a polynomial in z and %, then its Fourier trans-
form b(p, ¢) is a tempered distribution, and its
operation on all functions

w*(p, NP, @) = (@, 2p, a])(2(p, ¢, 4)
is well defined. This implies that Eq. (9) defines a
bona fide operator.
ACKNOWLEDGMENTS

Two of the authors (JRK and JM) acknowledge
discussions with Professor Glauber and Professor
Sudarshan that have largely prompted the present
investigation. One of the authors (DGC) is grateful
for the support of ARPA and Bell Telephone Lab-
oratories during this work.

APPENDIX A
We wish to evaluate the expression

P, B = [[ 0, o, o(BL), @

for
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¥, 9 = (¢[p, q], ¥)

= [ S sy + 9 dy,  (A20)
X(p; Q) = (q)[py Q]7 X)
= [ 50 s + 9, (A2b)

where ¢,(y), ¥(y) and x(y) denote the image in L*(R)
in the Schrédinger representation of &, ¥ and X,
respectively. The integral in (Al) is absolutely con-
vergent so we may integrate over p first'’:

Fa, k) = @0 [ e dg [ ™40, o, 9 dp.

Since ¥(p, ¢) and e "*x*(p, ¢) are both square
integrable in p and g, we can, for almost all g,
evaluate the inner integral over p by Parseval's
theorem and find

F(x, k) = qu e

X [ ¥ + deoly + D + 0 +2) dy, (A

since, e.g., ¥(p, ¢) is already the Fourier transform
over p of ¢X(yW(y + ¢) € L*(R) for almost all g,
as was shown in CRT IV, Sec. 3. An interchange
of the y and ¢ integrations, as permitted by the
absolute integrability of (A3), followed by a simple
change of variables yields

Fe, k) = [ dye i@ty + 2
x [ dgeviax(q + 2)

= &k, 2;0,0) [ dg e ba*(g+a), (AD)

which is the desired expression for each term in (17).
If we let

Juxlz, k) = f Y@l "x*(y + 2) dy
= (X, Ulk, z]¥),
then the results of CRT IV readily show that

13 E. J. McShane, Integration (Princeton University Press,
Princeton, New Jersey 1944), p. 145,

(A5)
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(a) [Ty, B <[]} 11X, (A6a)
®  [[ T8 B4 o, B db/2m)
= (7, ¥)(X’,X), (A6b)
while the following arise by definition,
(e) Jous(@, k) = ¥*(k, 7), (A6c)
@) Jvoeol®, B) = %*(k, 20, 0), (A6d)

where ¢,(y) denotes the image of the fiducial vector.
APPENDIX B

An example for which b(z, k) is not square inte-
grable is readily found. Choose the ‘“‘coherent-state
representation’ afforded by requiring (Q4-:P)®,=0.
For the operator ®, choose 8 = ¥¥', where ¥ is
the normalized solution of (wQ + iP)¥ = 0, ie,
an oscillator ground state with frequency w # 1.
In this case, it readily follows that the ‘“‘diagonal’”
elements

B(r, 8) = |¥(r, s)[*

=20} (1 + @) exp [~ (1 + &) (ws”" + 7)), (BI)
and thus that
Bz, k) = exp [-}(1 + o)(@" + «7'k)]. (B2)
For this case, Eq. (17) yields
bz, k) = exp{—}[z’(w — 1) + K’ (o™ = )]}, (B3)

and expression which grows exponentially in either
z° or k¥*, depending on the size of w. Hence, b(z, k)
for this density matrix is not square integrable.

Moreover, since b(z, k) grows faster than a poly-
nomial in « or %, the possibility that b(p, ¢) can be
interpreted as a tempered distribution in the sense
of Schwartz'* is ruled out in this case. For if b(p, q)
were a tempered distribution, the convolution the-
orem would still be valid, and 5(x, k) would also
be a tempered distribution.'* However, in the ex-
ample just given, b(z, k) cannot be a tempered dis-
tribution since it grows faster than a polynomial
at infinity.'* The example treated in this Appendix
may shed some light on the nature of the expression
for b(a) given by Sudarshan.?

14 1. Schwartz, Theorie des distributions, (Hermann & Cie.,
Paris, 1957), Vol. 1I.
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It is postulated that the S operator is dynamically independent of the wavefunctions of the asymp-
totic states. From this postulate a functional differential equation for the S operator is developed.
Its solutions include both the renormalized and unrenormalized Feynman-Dyson S operators;
appropriate boundary conditions distinguish the two solutions. Interpolating quantum fields are
defined in terms of the S operator and are only of secondary importance in this theory. Calculations
in this theory are not appreciably more difficult than the corresponding calculations with the un-

renormalized S operator.

A, INTRODUCTION

IN the past ten years several formulations of quan-
tum field theory that avoid ultraviolet diver-
gences have been developed. The basic formulation
is due to Lehmann, Symanzik, and Zimmermann';
others®® are extensions of the ideas introduced in
the basic formulation. In each of these formulations
one obtains an infinite set of integrodifferential equa-
tions for the S-matrix elements off the mass shell.

In this paper the infinite set of equations for
S-matrix elements is replaced by one equation for
the S operator. This S-operator equation has the
form of a second-order differential equation wherein
the derivatives are functional derivatives with re-
spect to free field operators.

For simplicity we deal with Hermitian scalar
fields throughout this paper. The extension to other
types of fields is straightforward; the special prob-
lems associated with quantum eleetrodynamics form
the substance of a subsequent paper.

The functional differential calculus of free fields
is discussed in Sec. B. In C, the basic formulation
of S-operator theory is developed, and in D this
formulation is shown to be equivalent to a previous
formulation.? In E it is shown that the unrenormal-
ized Feynman-Dyson S operator is a solution. A
sample calculation is shown in See. F.

B. MATHEMATICAL INTRODUCTION

Given an Hermitian scalar field, ¢;,(x), satisfying
= (0. — M)eu(@) = 0, ¢y
[¢in(x)y ¢iu(y)] = _'LA(:I; - y)v (2)

oix’ (@) 10) = 0, 3

* This work was supported by the National Research
Council of Canada.

1H. Lehmann, R. Symanmk and W. Zimmermann,
Nuovo Cimento 1 205 (1955).

: K. lehmma, Phys. Rev. 119, 485 (1960).

3 R. Pugh, Ann. Phys. (N. Y)23 335 (1963).

K:‘pin(x)

we wish to define a functional derivative having the
properties*

Spin(2)/ d0in(y) = oz — v), @

5§0,6n( ) (pm(xl) (oin(xn):

= Z 8(zs — o) oi(@) - Ay -

Here A; indicates that ¢;.(z,) is omitted from the
product. (In general the symbol A;;..., will indicate
that the ith, jth, , kth terms of a product or
sequence are all absent.) To streamline the notation
we shall write 8/8xz; for §/dp;.(2;).

In general a functional of the free field ¢;.(x) has
the form

eiwn@.): . ()

Flfl = E Pl ®)
with
Rl =5 [as a6

X i) < el )

Without loss of generality we assume that f, is a
symmetric function of its variables. The restriction,
Ko;, = 0, is equivalent to the invariance of F under
the transformations

fa—=fa + dfa, ®)

where df,(¢, - -+ £,) is any generalized function that
vanishes on the mass shells of the variables, ¢, -« -, ..
An important class of functions, Df,, is of the form

D.fut -+ &) = g - Ay e En)Kia(Ei - E:) 9)

Other members of this elass may have more é func-
tions and more K’s. The importance of this class
of functions is that given any function f one can
always separate it into parts of the form (9) and
parts that are not of the form (9). This separation

+ F. Rohrlich, J. Math. Phys. 5, 324 (1964).
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is unique:
f=7+ Dt (10)

In a similar fashion a functional F, can be split
into two parts,

Fn=Fn+DFn) (11)

with F, = F,[f.] and DF, = F,[Df,]. The functional
derivatives of F, and DF, are defined differently:
We define

% = [(n — 1)!]_l f d's -+ d* n_lf'ﬂ(& e £02)

X I¢in(&) s ¢in(£n-1)5: (12)

but DF, is defined to be a null functional and all
its functional derivatives are defined to be zero.
It follows then that functional differentiation does
not commute with space—time integration except
when the functional is of the F form.,

As a trivial, but important, example consider the
funectional

F = Kpu@ = [ d9IE.6 — )leu).

By the above definition this is a null functional so
its functional derivatives are zero. If, on the other
hand, one were to apply (12) to calculate the func-
tional derivative of K,¢;,(r) one would get

oF/oz = K, b(x — 2)

rather than zero.

As far as possible we shall deal only with functions
f for which Df = 0, and so we shall not need to make
explicit separations like (10) in the following.

It should be pointed out that there are many
other functions df, that vanish on the mass shell
besides those of the form (9). In general these other
functions cannot be separated uniquely from a given
function f. Hence two functionals F,[f,] and F,lg,]
may be equal even though f, # ¢.. Since

fal@: -+ 2.) = (0] 8"F[f]/éx; - -+ 2z, |0}, (13)

it follows that F[f] = Flg] does not imply that the
functional derivatives of F[f] are equal to the func-
tional derivatives of Flg]. In the case that all the
functional derivatives of F[f] are equal to the re-
spective functional derivatives of Flg] we say that
F[f] and Flg] are identical and write F[f] = Flg].
Hence we have

_ 8"Ff] 8"Flg]
Fifl = Flgl = 5 e = o - on, O
=g, forall n=. (149

FORMULATION 741
One must be ecareful to distinguish equality from
identity in dealing with functionals of free fields.

To conclude this section we investigate the func-
tional differentiation of time-ordered products that
arise in quantum field theory. The functional dif-
ferentiation of an ordinary time-ordered product
is strajghtforward:

(8/8x)(e(x) - - - e(@.))+

n

= Z<¢(xl) 1326%2

i=1

Co@) . 9)
but if Klein—Gordon operators are present, some
care must be taken since functional differentiation
and space-time differentiation do not, in general,
commute. Consider the following:

N = (3/)K, - Kfp(z) -+ o))+

Let us assume that ¢(y) is an interpolating quantum
field with the properties

o) = X e,

H
+

e(y) = fd4m e dim By m -
X :‘Pin(ﬂl) v (ain(nk):y
Kv‘pl(y) = O’

"Ik)

and let

x®) = e(y) — e(y). (16)

¢:(y) is a free field. Now examine the contribution
to N of d¢,(z,)/8z. Imagine the time-ordered product
in N written out as a sum of integrals of normal
products of free fields. In general, any free field
appearing in ¢(z;) will either appear in one of the
normal products or it will be contracted into some
other free field; in particular, this is true for ¢,(z.).
Only if ¢,(x;) is contracted does the time ordering
introduce a 6 function depending on z3: those terms
in which ¢,(z;) appears in a normal product, depend
on z} only through ¢,(z;). When K, is applied to
those terms we get zero. Thus we conclude that
¢1(z;) contributes to K, --- K.(p(21) - o(z.))+
only through its contractions with other free field
operators. Henee d¢,(z;)/dr does not appear in N,
Therefore we have the result

(8/0)K; -+ Kie(x) -+ o(2)+

“ K K B (o) B ) |

i=1

™

This result tells us how to commute functional de-
rivatives and Klein~Gordon operators in this com-
mon field-theoretic expression.
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C. FORMULATION

In this section we derive the equation for the
S operator. The fundamental dynamiecal axiom [Eq.
(31) or (32) below] is stated in mathematical lan-
guage and no attempt is made to interpret this
axiom physically.

The free particle state vectors are obtained by
repeatedly applying the creation operators

Qa?n = —1: f d3xfa(x) 5Oﬂain(x)v o = lr 21 Tty (18)

to the vacuum state and normalizing the result. Let
[a) be the n-particle state (@, - -+ «,) and let |a/a;)

denote the (n — 1)-particle state |a, -+ A; -+ @,).
With all the «’s different we have
l) = oia le/as), (19)

while if some of the «’s are equal, there will be a
normalization factor in (19). This normalization
factor will be ignored since it does not affect our
final result: we therefore assume that all o’s are
different. Under this assumption one has

ol ) = la/v).

We define |a/y) = 0 in the case that no «; is equal
to v.
Next observe that if v belongs to the set 3,

(] 8 18) = (af Sl 18/7)
= (o] [8, ¢l] 18/7) + (| 1S |8/7)

= [ a2 1@ 18 + @l S 8. @

(20)

In the last step we used

. oF
ou@, Fl = =i [ a2 -9 5 @
On the other hand, if there exists an operator ¢(z)
that satisfies the LSZ asymptotic conditions, one

gets the well-known result’

(@ §18) = ~i [ d% f,()(a] SK.o@) I8/
+ (/| 8 18/).

[e(xz) will be defined below, so we are not making
its existence or its asymptotic behavior axioms of
the formulation.] If we compare (21) and (23) and
if we make use of the fact that the states (a| and
|8/v) are competely arbitrary, we get

(23)

[t 1 iskew) =0, e

E. PUGH

One may continue the above reduction as was done
in Ref. 1 to get
"8
fd“xl o di, fy (@) o fh(xn){m
— (="K, -+ K.S¢(e(z)) - so(x,.))} =0. (25

The ¢ product is defined in Eq. (38) below. Here
the f’'s can be either positive or negative energy
wavefunctions: positive if |8) was reduced and
negative if (a was reduced.

Equation (25) is trivial for n = 0; for n = 1 it
can be satisfied without making use of any of the
properties of the wavefunctions by defining ¢(x) so
that

88/6x = —iSK,o(x). (26)

(Since this is an equation of definition, we are at
liberty to say that the two sides are identical in
the sense of Sec. B.) We may integrate (26) in such
a way that the asymptotic conditions are satisfied.”
The result is
.ot 4 ISS
o(@) = ¢ia(@) — 18 | d Ar(z — §) % 27)
If we demand that ¢(x) be Hermitian, then S is
restricted by

8" 88/5t = —(88'/8%)8. (28)
Taken together with ordinary unitarity
§'s =1, (29)
this implies
s's =1, (30)
which is generalized unitarity.’
Just as we defined ¢(z) so that the n = 1 part

of (25) was satisfied identically, we may postulate
that

52S/5-’131 or; = —SK,Kaole(r)e(22)), (31)

so that the n = 2 part of (25) is satisfied identically.
Both (26) and (31) could be derived from the
postulate that (25) is true with arbitrary functions
f»:(x;) (functions that are not necessarily solutions
of the Klein—-Gordon equation). It will be shown
below that (26) and (31) imply that (25) is satisfied
automatically for all n. First we note that

de(x)/ 8y = —iK,[p(@), o(1)]r

= —iK, (0@ — Yle@), W]}  (32)

8 G. Killén, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. V/1, p. 232; W. Zimmer-
mann, Nuovo Cimento 10, 597 (1958); H. Rollnik, B. Stech,
and E. Nunnemann, Z. Physik 159, 482 (1960).
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is an immediate consequence of (27) and (31). Either
(31) or (32) may be looked upon as the fundamental
dynamical axiom of this formulation of quantum
field theory.

It will now be shown that (25) is satisfied for
all n by Egs. (27), (30), and (81). We prove this
by induction. Assume

5”'3/5-731 s O, = ("“i)nSKx i Ku@(ﬂ"x cee ) (33)
for some n. Here we have written ¢, for ¢(z;). We
differentiate (33) to get a similar equation for the
(n + 1)th derivative of S. First examine the func-
tional derivative of K, -+ K, (¢; - -+ ©.)+. We use
Eq. (17) and
5Xi/5xn+1 = ""iKnn[%'y ‘Pn+1]}z -
= _’iKn+1{[¢i) ‘pn+1]R + iAn(mi e
to get
6/6xn+lK1 e
= —iK, - Ko Z

]

(@i — Tnr1)

Tns1) } (34)

Kn(wl P ‘pn)+

Z Oy -+ 8
u

* e eana] -

n—1,n

X binsrer
+ iAc(xs‘ - xni-l)(ﬁal e As‘ M pn)-f}v (35)

with 6,; = 0(z; — z;), and 1., indicating a sum
over all permutations of the variables (z;, --- .).
Collecting coefficients in (35) one gets

Ka(gol e

n+1{

X (9.' wir — Oina n+1)¢1 ’

+ Z 012 e

- 0l.n+l 912 '

* Pn

K 1 ¢ﬂ) +

Z 2912"

sy fwl

axn-l»l

= —iK, -

n—l n

* Pilrr1Pir1 T Pn

Ounsrfr *** @nas

* an-l.n‘pn+l‘pl M ¢n]

+ i 'I:Ae(x,'

i=1
= —iK, - Knu{(sol
+ X0 iA(x

= Zs)r oo Ay o

@5) +}

e ¢n+l)+ - ‘pn+l(¢l e
i ) | (RCE R R I
When SK, -

- Ku(@; *++ @,)s it differentiated, the
contribution from 88/éz,., just cancels the second
term in (36):

‘Pn) +
(36)

FORMULATION 743
(5/6xn+l)[SK1 e Kn(gpl et ¢ﬂ>+}
= —i8K, -+ K,ullen -+ Car1)+
+ Z ?:Ac(xi - xn+1)(¢1 e Ai e @n)+}' (37)

Finally when we compare the ¢ product with the
time-ordered product,

‘9(?’1 e ‘pn) = (ﬁol b ¢n)+
+ Z Az — 2o -+ Asy - @u) e
+ X bAdw — o))l — @)
X (o »r Aijrr »0 0 @a)s T+ ete, (38)

we see that the last term in (37) just supplies the
extra contractions that appear in @(¢; «+* ¢a41) but
do not appear in ¢(p, * -+ ¢.). Hence we have the
result

(8/824:1)[SK, + - Kupler -+ - ¢4)]
= —i8K, *+* Kunoler -+* 0arn)  (39)
so that
1S/ 8xy - v 82p
= (—i)""'SK, + - Kunoley *+* 0urt).  (40)

This completes the proof that (25) is satisfied for
all values of n by Eqgs. (27}, (30) and (31).

We conclude this section by eliminating the inter-
polating field from Eq. (31). Writing ¢ = ¢i, + x,
we have

in lﬂ

oleies) = e + (@7%x2) e + Oags)s + (uxe)s-

When K,K, is applied to this ¢ product, the first
term gives zero, and the second and third terms
contribute only when the ¢;,’s contract on the x’s:

K1K2(¢inX2)+ = "K1K2{021 ‘P:ny Xz]}

= 1K1K2{021 fd4 , Ay, — fl) 622}

= Ksz{ozx f d’ 1 d’ 2 Ay — &) Ap(zs — &)
&8 t 88

+ + 88
X [S won St aez]}‘

Using A4(z) = Ax(z) — A(z), one finds

41

Ksz‘Q(%%) = K\K, f d't difz{gleR(xz — £H)A(z, — Ez) + 044, — £)AR(r, — 52)}81‘ 528/551 3k,

— KK, f d* ) $§2{exzﬁa(x1 — E)Ap(zy — 52)8* 68

S 0Bnlz — )AL — s B g 5‘3} 42)
3

55
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80 that
(1 — B)S'6*8/ 6z, oz, = KK, f d't, d't,

X {0i284(z — £)Ar(x, — 52)81(65/551)8753/652
+ 0ndp(zy ~ Sl)AA(xz - SQ)S*(GS/%)S?BS/&I}.

(43)
Here we have put
B §’S/éz, éx, = — KK, f d't, d'%,
X [0 — £)0(x; — 22) -+ Oz — £)0(z: — )]
A(xl - Ez)A(xz - 52) 528/551 8&,. (44)

The properties of the integral operator, B, are well
known.’ It is a projection operator

B = B, (45)
and its eigenfunctions of eigenvalue unity
Bb=0b (46)
are of the form
bz, 1)
= (8°/0a) (9" /0" [8(a) — w)g(ey, 2)], (47
with n and m restricted by
n+m<4. (48)

It can easily be shown® that the right side of (43)
satisfies B\ = 0; therefore the integral equation,
(43), can be solved. Its general solution is

ST 523/5:61 5232 = b'(ﬁf;, xz) + K1K2 f d4 1 d.i 2

X {6,00AP 8'(58/58)8' 88/ 8¢,

+ 0,808 858/ 86)8 88/58)  (49)
or
828/ 6z, b2 = b(my, 1) + K\ Ke f d*%, d'%,
X 16,00 AP (68/88) 868/ 8¢,
+ 0, AL AP (58/ 58S 88/88,}.  (50)

Here we have put A{” = A;(x; — &), forj =R, A
andZ = 1,2and b = Sb".

In Eq. (50) the left side is linear in S while the
right side is nonlinear. It is therefore a convenient
equation for a perturbation treatment of quantum
field theory. In Sec. F, we shall solve (50) for § in
powers of a coupling constant.

E. PUGH

D. EQUIVALENCE WITH S-MATRIX THEORY

A previous formulation of quantum field theory®
was based on (27), (30) and a set of equations for
S-matrix elements which ecan now be written in the
form

O} "8/bx, - bz, |0}
= (—)"K, --- Kn«)‘ oler - - @n) l0>y
n=23 .. (61

Using the results of Secs. B and C, one can easily
see that (51) is equivalent to the present formulation.
Since 8 [0) = [0), Eq. (51) may be written as

8" 88

o Yy v+ Oy O 0T, 1)
3" .
= (0] m (—9)°K. K, So(p0:) |0},
for all n. 62)
According to (14), this implies that
528/521 0y = (—i)zKleS@(saxwz)f (53)

which is the basie equation of this present formula-
tion.

E. THE FEYNMAN-DYSON S OPERATOR

Equation (50) may be written in a still simpler
form if one is willing to risk introducing possibly
divergent integrals into the theory. First notice that
if the K,K, differentiation is carried out mm (50),
any term in which 6,, or 8, is differentiated satisfies
Eq. (46). Henee all these terms may be separated
off and absorbed into the function b(z;, z.). (It is
precisely this separation that introduces divergences
into the theory since these terms are, in general,
divergent.) In effect, we can therefore commute the
K’s and the #'s:

S = b w) +{(s 2)(s' 2} o0

02, 0x,

It will now be shown that the Feynman-Dyson
8 operator satisfies (54) and, therefore, (50) also.
The Feynman—-Dyson S operator may be written

So = (7)., (55)

Sf

with

H = g f dix :qpin(x)qpin(x) ot fain(x):' (56)

Since 8H/8x, is a function only of ¢..(z,), we have

dr, ¢ 6:016 .

(57)
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and
S _ ( ¥ H e_.-,,)
8z, 8x, 8z, 6z, .

Noting the identity

_‘?Eﬁ "iH) = (iI_I_ —iH) iH (ﬁﬂ _,-H)
(6x1 5-2726 . 12 Bxle +(€ )- 5;526 .

ox, 69:,
we have
t 5280 — T( 2I{ .-,'11)
8o oz, oxs . \oz, ox, - .
e
+ {( ° oz, So 5z, ] (60)
Finally, since
(1 — B)(°H/éx, bx,¢”*"), = 0, (61)

Eq. (60) shows that S, satisfies (54).
F. A SAMPLE CALCULATION

In this section we calculate the S operator to
second order with a ¢° interaction. Of course the
results are well known; the point to be demonstrated
is that the calculation is not appreciably more dif-
ficult than the corresponding calculation in the
Lagrangian formulation of quantum field theory.

Imagine b(z;, x,) in (50) expanded in a power
series in a coupling constant, g:

by, ) = 2 "0 (@1, 7).

n=1

(62)

For a ¢° interaction we take

bV (xy, 25) = 1 6(2y, T2)05a(T2). (63)

Since derivatives of S are of at least first order in g,
b™ is the only first-order term on the right of (50).
Hence with

w©

8S=Xg8”, 89=1 (64)
n=0
we have
8’8V )bz, 82, = 1 8(xy — Z2)ein(Ty). (65)
Integrating formally we have
SY = % f a'r 1 0:(2)@ia(®)in(2) : (66)

FORMULATION 745
and
88 /82 = 3 : 0in(@)eia(): . (67)
Hence the equation for S® is
2 (2)
66xsax = b(Z)(xl, xz) e %K}Kg f d4$1 d4 2
1 02
X {012Am ;:2) .¢ln(£l)¢1n(£1) ¢in(§2)‘pin(£2):
+ 021A1(31)A,(42) Z(Oin(fz)(@in(fz) : 3¢in(fl)¢in(51)3} (68)
= b(Z)(xl; Z) — % :¢in(xl)¢in(xl)¢in(x2)¢in(x2):

R R ATWVON INCRYS
+ 0,05 AL AE — £)) enE)enE):
+ ‘Kle fd4 1 d4 2{012A1(11)A(2>A (El - 22)

+ 021A(1) (2)A (22 - E])}

Integrating formally we get

(69)

S(2) = A — —fd4£1 d4£2
X oinE)einE)enE)enE)emE)enE) :
+ 5 [ 0 0% en@en@)A ~ Dokl

1
- 5 f d4$1 d" 2 00(2)(51: 52) 3¢in(£1)¢in(fz): . (70)
In the second integral we commuted the K’s with
the @’s since the resulting expression is finite. In
the last term we have put

1
“’(2)(51152) = ’_5 K\K, f d4"71 di"?z

% {ale(l) (2)A ("71 — )
+ 921Am (2)A+(772 - 7)1)} (71)

This is the “renormalized”’ propagator. A is any
operator that satisfies

(1 — B)6’A/éz, sz, = 0. (72)

The operator A is determined by imposing the fol-
lowing boundary condition on S: the S operator
can be written as a sum of terms S = Y.; X; such
that each X ; satisfies one of the following conditions:
(a) X; = 6X,/8y = 0. This ensures that such terms
do not contribute to higher-order parts of the S
operator. (b) X is the vertex part of the S operator.
(¢) The Fourier transform of "X ,/éx, - -+ 6z, (n=
1, 2, ---) vanishes for large energies.
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The first and third terms in (70) satisfy condition

(a); the middle term satisfies condition (c¢). Hence
A = 0 and we have

S(2) - +§_fd4ld42

X :¢in(51}€9in(fz)5c(€1 - S2)¢in(£2)¢in(gz): .
G. DISCUSSION

(73)

Let us review the main points of the above
formalism: Assuming that the properties of the S
operator and its functional derivatives are independ-
ent of the kinematics of the free-particle wavefunc-
tions we arrived at the relationships

E. PUGH

8" 8°8/6z, -+ 8xa = (—i)'K, -~ Kuoler -+ o),
n=20,1,2,...

For n = 0, this gives generalized unitarity. For

n = 1 it defines the interpolating field and for n = 2,
it specifies the dynamics of quantum field theory.
The relationships with n > 2 are derivable from
the n = 0, 1, and 2, cases and hence they say nothing
new. We found that the solution of the equation
in perturbation theory was not any more difficult
than a similar solution using Feynman techniques;
in fact the solution in the S-operator formalism is,
perhaps, more palatable since all integrals are con-
vergent.
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Starting with irreducible tensors, we develop an explicit construction of orthonormal basiec states for
an arbitrary unitary irreducible representation (A, u) of the group SUs. A knowledge of the simple
properties of the irreducible tensors can then be exploited to obtain a variety of results, which ordi-
narily require more abstract algebraic methods for their derivation. As illustrative applications, we
(i) derive Biedenharn’s expressions for the matrix elements of the generators of SU,, (ii) compute
the matrix elements of octet-type operators for the case (A, p) — (), u), and (iii) develop an explicit
unitary transformation connecting the isospin and the U-spin states in any arbitrary irreducible

representation.

1. INTRODUCTION

HE group SU, has, after a rather long search,

emerged as the group providing us with a power-
ful tool for bringing order into the ever increasing
complexity of high-energy physics." As a result,
interest in the study of the mathematical properties
of SU, and its unitary irreducible representations
(UIR’s) has grown immensely. Two fairly distinet
methods exist in dealing with this group; namely,
the tensor method, and the canonical method of
Weyl, Cartan, and Racah.” The former has been
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the other hand, for deriving many detailed properties
of SU, and its representations, it appears that the
second method must be used. As examples, we may
mention the derivation by Biedenharn® of the matrix
elements of the generators of SU,; in an arbitrary
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method is, however, often felt to be more demanding
in requiring a knowledge of advanced group theory.

In the course of a study of some mathematical
properties of the group G,, one of us (NM) has
developed methods,® which turn out to be of even
greater use in dealing with 8U; on aceount of the
greater inherent simplicity of this group. The tech-
nique of this approach establishes a direct link be-
tween the two methods referred to above, and thereby
profits from the advantages of both. It is our purpose
in the present paper to give an exposition of this
method along with some applications. Our work is,
in a sense, a ‘‘spinor calculus” for SU,, in analogy
to that developed by Van der Waerden’ for SU,.

In the following we assume that the reader is
familiar with the parts of the excellent article by
Behrends et al.,® dealing with SU;. For the rest we
use the well-known ideas drawn from the theory
of the group SU,, or the algebra of angular me-
mentum.’"*°

The material of this paper is arranged as follows.
In Sec. I, we review very briefly the definition of
SU, and its two fundamental UIR’s, and also
identify its important subgroups. Section II contains
a definition of a general UIR, and a statement of
the solution of the state-labeling problem. Section 111
is the heart of the paper. Here the explicit connection
between irreducible tensors and orthonormal basie
functions is established. In Sec. IV we give the first
simple application of the results of Sec. III. The
results of Biedenharn'' for the matrix elements of
the generators of SU, in an arbitrary UIR are
derived here. The next application is given in See. V
devoted to the evaluation of a certain class of matrix
elements of the “octet” (“regular”) operators of the
group. Lastly, in See. VI, we are concerned with
the U-spin formalism of Levinson et al.'* We develop
here the explicit unitary transformation conneeting
the isospin (/-spin) states to the U-spin states.
Appendix A contains an important algebraic com-

¢ N. Mukunda, Ph.D. thesis, University of Rochester,
Rochester, New York, (1964).

7 B. L. van der Waerden, Die Gruppentheoretische Methode
in der Quantenmechanik (Springer-Verlag, Berlin, 1932).

8 R. B. Behrends, J. Dreitlein, C, Fronsdal, and B. W,
Lee, Rev. Mod. Phys. 34, 1 (1962). See also D. R. Speiser and
J. Tarski, J. Math, Phys. 4, 588 (1963).

® M. Hamermesh, Group Theory (Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1961).

10 See, for example, M. E. Rose, Elementary Theory of
?gn%eglar Momentum (John Wiley & Sons, Ine., New York,

57).

i1 L, C. Biedenharn, Ref. 4.

2 G, A, Levinson, H. J. Lipkin, and 8. Meshkov, Phys.
Letters 1, 44, 125, 307 (1962); Nuovo Cimento 23, 236 (1962);
Phys. Rev. Letters 10, 361 (1962). See also A. J. Macfarlane,
E. C. G. Sudarshan, and C. Dullemnond, Nuovo Cimento 30,
845 (1963).
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putation required in Seec. III. In Appendix B we
give a compilation of the most useful results of
this work.

We give all our final results in such a way as to
be consistent with the phase conventions set up
by Biedenharn."

I. COMMUTATION RULES AND FUNDAMENTAL
REPRESENTATIONS

The group SU, is the group of all unitary uni~
modular matrices in three dimensions. It possesses
eight generators usually denoted as below:

Hly H2;Eta (a == 19 29 3);
Hi=H, E;=E...

(1.1)

The commutation rules (CR’s) of these generators
with each other can be found in the paper by
Behrends ef al.,”® and are not repeated here. The
generators I; of isospin rotations and of hypercharge
gauge transformations are identified as follows:

I, =3, Y=2H, I.=6%,,. 1.2)

Following Lurié and Macfarlane,'* we can arrange
the rest of the generators into tensor operators with
respect to the isospin subgroup of SU;. Thus we
have that F, = 6!E, and F_ = 6'E, form the
I, = 43 and I, = —} components, respectively,
of a spherical tensor operator of rank %; similarly
for G, = —6'E_s and G = 6'E_,.

The two basic or fundamenial representations of
SU, are both three dimensional and are denoted
by (1, 0) and (0, 1). The former is the defining
representation and the latter its complex conjugate.
We give, in Fig. 1, the states that appear in these
unitary irreducible representations (UIR) in terms
of the eigenvalues of the simultaneously diagonal
operators I, and Y. The explicit forms of the
generators ¥, in these UIR’s are

for (1, 0):
E, =67t 1)2, E,=61[1)3], E =6 [2)3[;
(1.3)

for (0, 1):
B, =67 2)(1], B, = 671 3)(1], Es = —67* [3)(2.
(1.4)

Each of the UIR’s (1, 0) and (0, 1) contains one
isodoublet and one isosinglet. There is some freedom

13 R. E. Behrends et al., Ref. 8.
(1924])). Lurié and A. J. Macfarlane, J. Math. Phys. 5, 565
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Fic. 1. States of the fundamental representations.

in the choice of signs in (I1.3) and (I.4); we have
taken care only to obey the CR’s and to obey the
Condon-Shortley phase convention as far as isospin
is concerned.

We look briefly at the actual matrices that occur
in the UIR’s (1, 0) and (0, 1), for finite group
elements of SU;. If a is some element of SUs,, it
induces the following transformation on a set of
three quantities 2™ (complex numbers):

3
a: a" -z = Y Anz™; m=1,23.

m’ =1

(1.5

Here ||A7.|| is a unitary unimodular matrix; and
as a ranges over the whole of SU;, we get all unitary
unimodular matrices ||4|]. The correspondence
a — ||Al] constitutes the UIR (1, 0). The UIR (0, 1)
is obtained essentially (that is, apart from trivial
changes due to phase conventions) by complex con-
jugation from (I.5):

a: Yooyl = 2 Ay (1.6)
We call ™" a quantity of type (1, 0), and ¥, of type
(0, 1). We also use upper indices m and lower indices
n as in (I.5) and (I1.6). From z™ and y, we can form
one invariant bilinear quantity:

2 gnx Y =Ty — &Y — 2. (L7
The form (1.7) is fixed by (I1.3) and (1.4); and from
the structure of £, in (I1.3) and (I.4), we can recognize
the first two terms in the form (I.7) as consisting
of two spin-3 quantities coupled to spin zero.

It is useful to record here the relationship between
the generators I, I,, Y, F,, G, obeying the CR’s
given by Behrends et al.,'® and the same generators
looked upon as forming a tensor with respect to
SU,. The CR’s given by Okubo'® are in the latter
form. Since the manner in which we define our in-

variant is given by (1.7) in terms of a metric tensor
g2 which is not the same as a Kronecker symbol &,
we must use the former, and not the latter, as an
invariant tensor. Following Okubo,'® the generators
of SU; can be written as B} with

2. giBi =B} — B} — B} = 0;

i (1.8)
ot i i'pi’

B) = Z gi-g: Bi-;

and

[B}, Bil = ¢:B; — ¢.B;. (1.9

These rules are then consistent with the CR’s of
Behrends et al. if we make the identifications

I+ = _B;r I— = Bf, I: = %(B: + Bg)’
Y = Bg) F+ = _B;y F— = _Bg’
G, = B;, G- = Bi.

(1.10)

It must always be borne in mind that the indices
i, j in B! belong to the UIR’s (1, 0), (0, 1) respec-
tively, transforming accordingly, and carrying the
isospin and hypercharge values given by Fig. 1.

JI. GENERAL UNITARY REPRESENTATION AND
STATE LABELING
An arbitrary UIR of SU, is denoted by two
integers, each zero or positive: (A, p). The UIR
(A, u) is obtained by taking the following direct
product of the fundamental representations:

P A

e —>

15 5, Okubo, Ref. 3. It should be noted that our upper
index corresponds to Okubo’s lower index.
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reducing this product into irreducible constituents,
and taking the “largest piece” [equivalently, the
irreducible part that contains the highest I, that
can occur in the produet (I1.1)].

We define (A, p) in terms of tensors. A tensor T’
of type (A, u) is a set of quantities T7;72..,™ that
transform as follows, when z” and y. of the last
section undergo the transformations (I.5) and (1.6):

B
a: T 00— To0

m n
=Z EAm:’ mA‘An: )

tm’{n')

s AR (11.2)
[Again, (IL.2) is true apart from trivial changes due
to particular choice of phases in (I.3) and (I1.4.]
If a tensor T of type (A, u) hag the following prop-
erties:

(i) symmetry among the upper, or (1, 0)-type,

indices,
(i) symmetry among the lower, or (0, 1)-type,
indices,
(iii) “‘tracelessness,” i.e.,
2 g
=Tyl - T =Tl =0, (I1.3)

then T is called an irreducible tensor; and the linearly
independent components of T supply the UIR (A, u)
of S U, 3-

The orthonormal basie states occwrring in the
UIR (A, u) can be completely labeled by three
quantities: I, I,, Y. These form a complete com-
muting set of operators, within a UIR. The values
of I and Y that appear in (A, u) were essentially
determined long ago by Weyl' in his work on the
unitary groups SU,, and can be stated as follows.
For each pair of integers f, g obeying

Atp2f2p2920, (IL.4)
we find, onee, the (I, ¥) multiplet
I=3f—9, Y=Ff+g—30+24). (ILJ)

We note that the results embodied in (II.4) and
{IL.5) can be derived in a very simple way, from
our approach [see the parenthetic remark preceding
(I11.10)].

III. CONSTRUCTION OF ORTHONORMAL
BASIC STATES

In this section we carry out our program of
explicitly constructing an orthonormal basis for the

18 . Weyl, Group Theory and Quantum Mechamcs (Dover
Publications, Inc., New York, 1931). See also J. ess,
Nuovo Cimento 15 52 (1960), M. Ikeda et al., Ref
S. Okubo, Ref. DA, J. Macfarlane et al., Ref. 12 C. R
Hagen and A. J. Macfarlane, J. Math. Phys 5, 1335 (1964)
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UIR (A, u), starting from an irreducible tensor T'
of type (A, u).*

Let the range of values of I, I,, ¥, as given
by (I1.4) and (I1.5) be denoted by R. (Also, we
shall replace 7, by the symbol M.) Let T be an
irreducible tensor of type (A, u). Then since every
index of T, upper or lower, transforms in a unitary
manner, we can set up a quantity that is obviously
invariant under SU,:

o= >0 2 TR

tm} {n}

(II1.1)

Since T is irreducible and supplies us with the
UIR (A, u) we expect to be able to define a set
of quantities ¥ " linearly in terms of 7, such that
m= 2 [ (I11.2)
R
Qur purpose is to compare (I1I1.1) and (I11.2) and
deduce the connection between ¥3* and T'; from
the form of 9M in (I11.2), it is legitimate to speak
of the ¥;¥ as an “orthonormal basis.”

We shall rewrite (II1.1) in a series of steps. Each
index m, takes on three values corresponding to the
three states that appear in the UIR (1, 0) (see
Fig. 1); similarly for the n; we use the states of (0, 1).
By the symmetry properties of 7, any component
of T is completely specified by stating how many
1's, 2’s, and 3’s there are among the upper indices,
and similarly for the lower indices. The position
where a particular index occurs is of no consequence.
We can then always write components of 7' in the
form

11100222200 o830
L11ens 250r.330en

Let us pick a component of 7" with the first (j, -+ m,)
upper indices and (j» — m.) lower indices equal
to 1, the next (j, — m,) upper and (j, + m.,) lower
indices equal to 2, and the remaining (A — 2j,)
upper and (u — 2j,) lower indices equal to 3. We
can unambiguously denote this component of T by
Ti:m:, The ranges of 7, j,, m,, m, are:

Famy®

fmxi < i fm2¥ <i; 1=0,%1,-- 3X;

(TTL3)
.?.2 = 0: %s 1: T %f‘h

Then, again because of the symmetry properties of
T we can write:

mo= 25 > [whmp,

Fimy fama

(I11.4)

where we have set

iimy
ismg

= Nl(jl) mly j2! m2)TZ::::y
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Nl(jh mlr jz; mz)
= DRDG + m) G — m) I — 25)!
X (Jo + m G — m)Wu — 25107 (I11.5)

The significance of the variables j,, m,, js, m. is
the following. From the definition of 77:7, we know
the 24, of the upper indices are of the spin-} type,
and 27, of the lower indices are of the spin-} type
{(note, that on account of their formal equivalence,
we use the terms spin and isospin interchangeably).
Further we know that T is separately symmetric
among the upper and the lower indices. Now it is a
well known theorem in ordinary angular momentum
theory, that if any number, 24, of spin-} states are
coupled in a completely symmelric manner, we auto-
matically obtaina definite total spin, which is, in
fact, the maximum possible value, j. Thus 7, is the
value of the isospin contributed by the upper indices
by themselves, and j, that by the lower. Also, the
variables m,, m, were set up so as to correspond
to the projection quantum numbers associated with
j, and j, respectively. Finally, since we have taken
care to define the operators I, according to the
standard Condon—Shortley phase convention'” in the
UIR’s (1, 0) and (0, 1) the quantities ¢}:,.: defined
in (II1.5) also are consistent with the standard phase
convention.

From the form of the UIR’s (1, 0) and (0, 1) as
given by Fig. 1, we see that ¢*7*, or Ti:7:, possesses

Fama)

a definite value of hypercharge Y
Y =2 — j) — 300 — p).  (TL6)
Also, ¥I:7* possesses a definite value of total 1.:
I.=M = m + m.. (111.7)

Comparing (I11.6) and (II1.7) with (II1.5), we see
that we have already succeeded in introducing two
of the quantum numbers needed to speeify the states
of (\, 1), and are getting close to the form (I11.2)
for 9. The quantum number still to be introduced
is the total isospin, I. It is clear that I must arise
from a suitable coupling of j, and j,. So let us define
a new set of quantities, that takes us from the
{m,, m,) representation to an (I, M) representation,
viz.,

WA = 30 CGi, o I, may, M)Wm:. (1IL8)
Then we can write (I11.4) as
mo= 3 33 R (1LY
d1,ia 1 M

17 B, U. Condon and G. H. Shortley, The Theory of Alomic
Spectra (Cambridge University Press, Cambridge, England
1935).
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We have yet to take into account the tracelessness
condition which T has to satisfy. We set out to do
this next.

Consider the quantities ¥3i*'Y, and their con-
struction from Tj:n:. For the case I = j, + 7,
it is clear that, not only are any two upper spin-}
indices necessarily coupled to spin 1 (by symmetry),
and similarly for any two lower spin-} indices, but
also any one upper and one lower spin-§ index must
be coupled only to spin 1. Otherwise, we would not
be able to get the maximum value j, + §, for I.
Figuratively speaking, this is the “stretched-out con-
figuration.” This immediately suggests, that if we
wish to obtain a value of I less than j, + j,, then
we essentially have to couple a sufficient number
of upper and lower spin-} indices o spin zero, pair-
wise, and then couple all the remaining spin-{ indices
to thewr maximum. For, with given j,, 7,, each J
value occurs just once; and we have exhibited a
mechanism to obtain such an 7 value.

Now from (1.7), and the remarks following it,
we see that the fracelessness condition, (I1.3iii) implies
that coupling an upper spin-i index and a lower
spin-} index to total spin zero, is numerically equiv-
alent to replacing each of these indices by the index 3,
which carries no isospin. From this and the observa-
tions made in the foregoing paragraph we realize,
that in looking for tndependent linear combinations
of Tyx.. we need only couple j;, j, in % or
Ti:m to a mazimum, I = j; + j,; taking any lower
value of I is equivalent, apart from a numerical
factor, to suitably reducing j, and j, by equal
amounts to %, /7", say, and then coupling 7*
and 75 to their maximum to give the desired I
value: We may remark parenthetically, that these
observations immediately lead to the rules (I1.4)
and (I1.5). In this process of reducing j,, j» to /7,
72", the hypercharge value does not change; and,
for given I, ¥, we easily obtain

Y = 26, — i) — 30— w)
= 207" — ) = 30— w);
R N
=M+ 17+ 10— W)
3o — i+ D)
=3 — 1Y — 30— ),

(II1.10)

min

In our scheme, then, tracelessness can be expressed
in the following manner:

%l(i.f,) = NQ(]-I,]-2,1)%;&{:',—:‘,”1.ati.—iwm. (I11.11)
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Clearly, the factor N, is independent of M. We now
proceed to evaluate this factor.

As a first step we have to solve a problem con-
nected with the SU, group, and coupling of angular
momenta. For this purpose it proves helpful to use
the method of boson operators introduced by
Schwinger and widely used by Bargmann and
Moshinsky.”® Consider two boson oscillators with
creation and destruction operators a*, a., respec-
tively. They obey the standard CR’s.

la,, a¥] = [a_, a*] = 1,

(I11.12)
fa,,a.] = [as,a*]=--- =0
We define the vacuum state |0) by
@, 0) =a.]0)=0; (0j0) =1  (IIL.13)

Now define three operators J{*, J{¥, J:* by
1 £ = TP = atas; Ji¥ = i(a*a, — a*al).
(I11.14)

Then, using (II1.12), one can easily show that the
operators J{ obey the CR’s of the SU, algebra,
that is the algebra of angular momentum. Further,
with respect to J{*, the pair a* and a* form the
+3% and —% components of a spherical tensor of
rank 3.

We may now proceed to arrange the states of

(af)i'+m’(af)f'—m’(bf)i'+m’(bf)i'_m’ ’0)
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the two oscillators so that they provide IR’s of the
operators J®. It is easily shown that the (2j + 1)
normalized states

(@) "(a®) ™"

) = G my — w1

m=—j, i 1,4

(I11.15)

provide us with the representation of J{* corre-
sponding to spin j. In this way, each UIR of SU,
appears once among the states of the two oscillators.

Let us now add two more oscillators with op-
erators b*, b, obeying CR’s exactly like (III1.12).
Further, let all the a-type operators commute with
the b-type operators, and let them possess a common
vacuum. Analogous to (III1.14), define operators J "
and set

Jo=J® + JP. (I11.14)

Then the J; also obey the CR’s of angular momen-
tum. With respect to J., both (a*, a*) and (b*, b*)
form spin-} systems. We can check that the op-
erators J,; commute with the combination

(ab* — a*b?). (I11.16)

The operator expression (ITI1.16) is a scalar operator.
In an obvious way we define the following normal-
ized states:

Ulr My, Jz, mz) =

mymg

(G + m)1G — m) G + m)(Ge — m) 1P
[IM(5,52)) = E Clr, jar I; My, ma, M) |j1, My, 2y m5).

(111.17)

(TI1.18)

Then the foregoing statements concerning coupling of two angular momenta j, and j, to a total I < j, + 7.

are expressed by the equation

IIM(4,32)) = A(j.I)(a%b* — a*b¥)irtint

(I11.19)

ﬁ—ﬁ+1jr—h+6>
m(b=fptl hoptl))

We shall first evaluate the quantity A, and then derive N, of (III.11) using A. To find A, take the case
M = I in (II1.19), and substitute from (III.17) and (III.18) on both sides of (I11.19). Then on the rhs,
we have a very simple CG coefficient whose value is unity, while on the left, we have a sum over m,:

(af)i'+m‘(af)h_m’(bf)i”m’(bf)i'_m’ |0>

2 Clsgd 5 mum,

mims

= A(if)(a*b* — a*b¥)++i~!

DG+ myts = m)'Go + ma)1Gs — m)TF

(at):‘:—i.-l-t(bt)i.—iﬁl ,9) .
G — 5 + DG — 5o + DI

(IIT1.20)

The special CG coefficient in (II1.20) can be obtained from the general expression for C(j,j,I; mm,M)
and consists of a single term. Comparing both sides of (III.20), one finds

A(jszl) = [(21 + 1)!]* X [(.71 + 7. — DG, + jz + 7+ 1)!]—}-

(I11.21)

18 J. Schwinger, On Angular Momentum, USAEC, NYO 3071, 1952 (unpublished). V. Bargmann, Rev. Mod. Phys. 34,
829 (1962); V. Bargmann and M. Moshinsky, Nucl. Phys. 18, 697 (1960); 23, 177 (1961).
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We'find N, from A as follows. (I11.19) is a property
of the SU, group. In (I11.19) we can use components
of our irreducible tensor 757! in place of the states
and operators appearing there. The a* operators
play then the role of upper spin-} indices, the b*
of lower spin-L indices. The operator expression on
the rhs of (I11.19) expresses explicitly the “pairwise
zero coupling” of upper and lower spin-} indices
in 797, [(IIL17, 18) are analogs of (IIL.5) and
(I11.8) respectively.] From (I1.3i1) we know that
the “zero coupling” appearing on the rhs of (I11.19)
allows us to just increase the number of indices in
Tim that have the value 3. Thus beginning on the
Ihs of (IX1.19) with (A — 2j,) upper indices equal
to 3, and (u — 24:) lower indices equal to 3, we use

PR = [ — 250 We — 25017 A RD)

- : ISCISFTET PRI SEFEE P T 491
= Nu(js, fa, Dgagd0emiat b AtamictiD
with
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the tracelessness of T, to obtain on the rhs
(A—2f;+jr+js—1) upper and (u—2f+ji+j—1I)
lower indiees equal to 3. At this peint, we must
remember that N, in (IIL5) has combinatorial
factors

[ = 21 ~ 23007

that do not appear in (I11.17, IX1.18). This is because
the indices in 77,72 have also the value 3 in their
range. Naturally such factors do not appear in
(I11.17)~(111.21) which deal with SU,. Remembering
that the number of 3’s changes when we use trace-

This completes the evaluation of N,.

Let us now return to our basic equation for the invariant 91:

lessness, we combine (II1.5), (IIL.8), (III.17)~
(IT1.19), and (I11.24) to get
X {O\ — jl + jz . I)”(ﬁ — jz + j: i~ I)!]%‘llﬁ%(h—iﬁn.éh’,“r‘wn)
(111.22)
s s _ RI+DA— g4+ g — D~ o+ 4 — DI :I
Nainy i D) = [(g} F = DG+ h+ TF DI = 20 = 291 ° (H1.23)
M= > ; [P 2, (111.9)

fifa 1

Let us choose some value for ¥'; this fixes the difference (7, — 4.), by (I11.10). Let us next choose some
value for I. Then all the terms in (II1.9) for this pair of values of 7 and Y are multiples, by (I11.22), of

the “basic’”’ term.

Vi

TR i (111.24)

where /™ and j&* are given in (I11.10). We can therefore write

N == Z [N, Y)}z ; ﬁ"’-minﬂ:mi“){z.
R

(I11.25)

The quantity [N,]® is clearly a sum of factors [N.]” over (j,, j.) for fixed I, Y, i.e., fixed (j, —~ j,). We evaluate

N, in the Appendix A; the result is

-~}
NI, V) = (@I + DI+ + 1)!1*[(5——3‘:;)3—‘5 T QIR VY [ e LIS 1):] .

(I11.26)

Having obtained the form (II1.25) our task is done. Apart from a phase, which we shall choose suitably

in the next section, we set

T;:::: = {Nxﬁlmszmz)}“l

IR ey

BT = NI, DA = NI YY) S G, 5, T; mum )N m,, fom)Tiseiem:, (TTL27)
where 77, 722 are defined in Eq. (IT1.10), (IIL.27) is easily inverted to express T in terms of ¥:
ZIZI = {Nl(jlmljzm2)}—l ; C(f.ljw{; mymM) ‘!"%“i')
= {Nl(jzmzjzmﬁ)}ﬂ Z Cljed; mxmsz2(51.§21)ngm'iﬂn'i”'—h“n
! (111.28)

= [Nl(jt'”7a1.7‘2ma)]w1 IZ C(jrjd; MmumM)N(GugI) NI, Y)]_I‘I’fsiyi

Y = 201 - ]2) - %O\ et ﬂv)-
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(I11.27)—(111.28) are the basic equations of our
method. (III.27) allows us to express orthonormal
basic states of a UIR (A, u) in terms of irreducible
tensors of type (A, p). It is useful in defining physical
particles, in terms of appropriate tensors. As a
simple application, we consider the octet representa-
tionof SU;; A = u=1l,andtake I = M =YV =0
on the lhs of (I11.27). Then 7 0, and
we get

_  mmin __
= 1, =

¥ = Ny(0, 0)N,(0, 0; 0, O)TS

= (312120415 = 3T5/6t. (I11.29)

ForI = M = 1,Y = 0, for instance, 7*° = jpi* = 1
and

¥ = No(1, ON:(3, 3; 3, T2 = T2 (I11.30)

(I11.29-111.30) are quite familiar (apart from phases)
in connection with tensor representations of the A"
and =+ states of the octet model based on SU,."°

As we have already stated, there is a great deal
of freedom in the choice of phase in (II1.24). We
make a definite choice in the following section when
we adopt Biedenharn’s phase convention.

Note added in manuscript: It has been pointed
out to us by the referee that the work of M. Moshin-~
sky in constructing polynomial bases for irreducible
representations of SU; [J. Math. Phys. 4, 1128(1963);
see also M. Moshinsky, Ref. (5)], can be related to
the present work as follows. Let us momentarily
use a metric in which the invariant of (1.7) is con-
structed with a Kronecker delta 3;. One starts with
two ‘‘vectors” z™, y, of types (1, 0), (0, 1) respec-
tively, obeying the restriction

; ™Y = 0. (D)

With the help of these two vectors, one can con-
struct a particular irreducible tensor T of type (A, u)
by defining

(i1)
[Note however that every irreducible tensor 7T of

type (A, u) is not of the form (ii).] If one wants
to build 7' from vectors of type (1, 0) alone, define

(iii)

mattomy my mx
Tn,’---n,, =z cee X ynx e yn"_

y” = Z enm,muxm zm N
i,
where €, 18 the completely antisymmetrie tensor,

19 8. Okubo, Ref. 3.
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and z™"’ is an arbitrary vector of type (1, 0). Then
(i) is automatically obeyed. Now denote the vectors
™, 2~ by

m'

=l =2 (iv)

and introduce the determinantal notation:

_ ‘e " P
As =1xT(sy, A5s = Z(snx(sy — TisHTes . (V)
From (iii) one has

yl = Afz) Z/z = A?éy y3 = A};, xm = A";' (Vi)
With the above notations, and definition (ii) for T,
the component of T' denoted by us as [see above
(I11.3)]

Tﬁ::‘mx

Tams

becomes
(Ai)i:'i'ml (Ai)il_m, (A:i))\—2il (A2132)i|"f'ls

(AT AR L (i)
Expression (vii) is the one given by Moshinsky
(except for interchange of upper and lower indices)
for the basis of irreducible representations of SU,.
We note that Moshinsky uses the formalism of
boson creation and destruction operators, and this
technique has been used by him to construct bases

for irredicible representations of the unitary groups
SU.,, for all n.

IV. MATRIX ELEMENTS OF GENERATORS

In this section we show how to derive the matrix
elements of the generators of SU,, in the UIR (A, u),
in an orthonormal basis ¥}, labeled by I, M, Y.

The forms of the operators I,, I, are well known
from the theory of SU, and read:

ILyv,Y = My,

(Iv.1)
1wy = [(IF MYT + M + 1)PeL7,.
For H,, or Y, we have
Yot = Ywlr. (IV.2)

Using the Wigner—Eckart theorem for SU,, and the
fact that F, form the 44 components of a spherical
tensor of rank 3, all matrix elements of F, can be
expressed in terms of two reduced matrix elements,
which are functions of 7 and Y. We write this as
follows, denoting basic states of the UIR (A, x) for
the moment, as |(\, p); IMY),
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(S I+ 5 ML Y+ L[F ) IMY) = C(, %, 1

I -3 M3 Y+1[F

0w IMY) = €U, 4,1 —

UNIFIED REPRESENTATION THEORY OF S§U.

+ %; ]l’[) :{:%; M+ %)le‘ﬂ; IY):
(IV.3)
3 M, £3, M &= Df.0; IY).

The analogous relations for G, can be derived by complex conjugation from (IV.3) and relabeling of variables

I, Y. They read:

(s I+ 5 M3, Y —1HG [Nw); IMY)

(@I + /@I +2PCU, 3, T+ 3, M, =4, M £ PA0w; T+ 3, ¥ — 1),

O w; I -3, M1, Y —-1G. |\ w,IMY)

= [ + 1)/201C(L, %, I — %; M, £3, M £ DfOw; I — 3,

The object is to find the functions f, and f,. We
shall in the sequel omit the variables (Ag) in states
and in f, and f;, as they do not change in the course
of our discussion.

The simplest way to find f, and f, is to take a
special case of (IV.3), say, and rewrite it as an equa-
tion for states ¥ related to an irreducible tensor T
by (I11.27) and (I11.28). Choose M = I and take
the operator F_ in (IV.3). We can then write

Fy? =041+ 41,-4,1-9)
X fl(I Y)\I,H-} Y+1
+ 0,5, 1 - 41,
X I DT Iv.5)

We will now explicitly evaluate the lhs of (IV.5)
and identify f, and f,; starting with a given I and ¥,
we introduce the quantities 7*, 73 and refer to

them from now on as j,, ja:

251——

R G e T
= =37 = 30— W) + 4L
We have, using (I11.27):
Fyp7 = F_{Ny(I, Y)N:(ijifada) Tra2}
= No(I, V)N:\(ijrdai) {F-T3353} (IV.6)

= Nu(I, YIN,(Gijrjaio) {6 EsTi20

To evaluate the curly bracket term in (IV.6), we
remember from (1.3} and (I.4) that the operator
61K, s has the following effect: acting on an upper
index, it changes a 3 into a 2; acting on a lower
index it changes a 2 into a 3, and gives an additional
minus sign. Sinee we also know that the generators
for a direct product of many UIR’s are the sums
of the generators of the individual UIR’s, we sece
that 6%E,; acting on 7:i* changes every upper index
3 into a 2, one at a time, and then each lower index
2 into a 3, again one at a time; the latter terms

(IV.4)

Y — 1).

have an extra minus sign. Using again the fact that
T is symmetric, we have

6°E.; T}

=\ = 2)Tisht — 25 iy L, (V)
so that
F¥pY = Ny(I, YIN(ijidafe)

X AN = 2T — 25,7y ). (IV.S)

We now use (II1.28) to write the 7 in (IV.8) in
terms of ¥. We find

NoGy+ 3,0, L+ 3)

Tofhict o B T i T
Ni(i'x + 35— 3y 2 o)
X C(j: -+ %—, o, I + %? jx -1 2 I - z) ‘I,IH} Y+1
NI+ 5 Y +1)
No(h + 3, 32;1"“‘
NG+ 3,5 — 3, Jar J2)
CG, + % Jos I — % i — %, jor L~ %) I-},¥7+1
X NI=3 7+ b
(IV.9)
irie No(ii, je — 3.1 — 3)
b T Arl(jly jn jz - %: .?'2 - %)
>< 1 IET(1V.10)

Ns(I_ %, Y'Jl‘ 1)

Using (IV.9)-(IV.10) in (IV.8), and comparing the
terms ¥}2}¥*! on both sides of (IV.5) we get

€I, 3, I1+%1,-31-9HAA,Y)
__NILY) NG

NI+ 5, Y+ 1D NG+ 3,50 — % Gar 1)
XA =20)N:(G0 + 3,50, L+ 3)
XCG+ %40 I+ 50— 35,1 —%. (IV.1D

The ratios of N factors appearing in (IV.11) are
easily evaluated; the factor N, turns out to be unity;
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the special CG coefficients present in (IV.11) also
have simple forms, With the values of j,, j;, given
above, one then gets:

10 = g A2 1+ L 42)

@I + 2)* 3
( )(2" ; Ly 8 23)}* (IV.12)

In an analogous manner one gefs

1 (oA _Y )
@I—)f{( 3 +1I 2+1

f.(I, Y) =
L]
( -—)(ﬁ}—“—1+z+1)}. (IV.13)
3 2
Equations (IV.1)-(IV.4) and (IV.12)-(IV.13) con-
stitute the solution to the problem of evaluating the
matrix elements of the generators of SU; in a arbitrary
UIR (A, u). They differ from the results given by

(Ow); I+ 3, M x5, Y+ 1 F. |(\w); IMY) =
e

+5 Y+ 1|F,. |w); IMY) =

)\-}-2#_
X{( 3

(Mw); I — 3, M

Y K
I+2+1)(

I, w); IMY) =

It is worth stressing that our final choice of &}
defined in terms of 7' must be taken in conjunction
with the definitions (I.3-1.4) of the fundamental
UIR’s (1, 0), (0, 1).

V. MATRIX ELEMENTS OF OCTET OPERATORS

In a recent paper, Lurié and Macfarlane® have
calculated the matrix elements of the regular (or
octet) operators of SU;. They have employed al-
gebraic methods making a very judicious use of the
commutation relations of the octet operators with
the generators of the group, and also the results
of Biedenharn for the matrix elements of the gener-
ators. In the present section, we propose to use the
method of See. III for obtaining the matrix elements
of the octet operators as an illustration of the sim-
plicity of calculation made possible by this method.
Knowledge of the matrix elements of the generators
is not required for this calculation. We shall concern

20 1, C. Biedenharn, Ref. 4. See also G.
L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963)
2t D, Lurié and A. J. Macfarlane, Ref. 14.

. Baird and
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Biedenharn,™ only in that Biedenharn’s function f,
has an opposite sign to ours. Since we wish to be
in accord with Biedenharn’s phase conventions, at
this point we make a definite choice of phase in
Eq. (II1.27). As was mentioned there, we can always
introduce a phase dependent on \, u, I, ¥ in the
connection between ¥};* and 7i:7:; for such a phase
would never appear in the invariant 9. In terms
of the ¥, of (II1.27), we define new basic functions
5" as follows:

QEI.Y = (_ 1)1—}1'—*(“2,.)\1,31*.

(IV.14)

This phase is chosen so as to be real, and to be
unity when 7 is maximum. If we now define functions
fil, Y) and f,(I, Y) as reduced matrix elements
of F. taken between states ®;” then f, is the same
as before, (IV.12), while f, changes sign, as compared
with (IV.13). In comformity with Biedenharn, we
have then

CI, 5 I+ 5 M, £5, M £+ H2I + 27}

JBe -1 -9,

C(I, 3,1 — M, 3, M + Hen?

)(2)‘+“+I——+1>}%

7.¥
Py .

(IV.15)

ourselves with the one speclal case not treated by
Lurié and Macfarlane in their paper; so that the
results of this section will be a natural supplement
to their results. We rely heavily for notations and
general observations on their paper so as to avoid
repetition.

Lurié and Macfarlane arrange the octet operators
in the set

(gn (y: gt; c'}’i) 9*)7 (Vl)
corresponding to the set of generators [cf. (1.10)]
d.,Y,1.,F., G, (V.2)

where the former transform under SU, exactly like
the latter. For the purpose of our method, which
makes use of tensors, we look upon the octet op-
erators as components of a traceless tensor S%, and
make the following identifications:

9, = %(S} + Sg)! (y = Z, = —S;v
9. = S?, $+ = —S;| F_ = "S:,
G. =8, G =

(V.3)
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The operator 8?2, which transforms under SU; ac-
cording to the UIR (1, 1), will connect a UIR (A, )
to UIR (', y') occurring in the reduction of the
Kronecker product

1, 1) O N . (V.4

Lurié and Macfarlane note that this produet contains

(1) W+2, p—1) once, unless u=0,

(2) A\—1, u—1) once, unless u=0 or A=0,
(3) A\—2, u+1) once, unless A=0 or 1,
(4) (Z\+1, p+1) once,

(5) (Z\—1, u+2) once, unless A=0,

(6) (\+1, u—2) once, unless u=0 or 1,

(7) O, w) twice, if A, u #= 0;

once, if A=0, p5#0, or p=0,A%0;
not at all if A=p=0. (V.5)

They have treated the first six of the above cases
by their method. In the seventh case the UIR (A, p)
occurs twice, in general. It is this case we treat here.

There is a rather unique way of distinguishing the
two occurrences of (A, u) in (1, 1) @ (, ) in the
tensor method which we employ. This may be con-
sidered as an added advantage of the present
approach. What we have to do is to construct
irreducible tensors of type (A, u) from the traceless
tensors S; and the irreducible tensor T7.,7:.."
which, being irreducible, is symmetric in all of its
A\ upper indices, symmetric in all of its pu lower
indices, and is traceless. From these two tensors we
can construct two independent tensors with A upper
and u lower indices in the following manner.

Nu's MY g zas IMY) = C(L, 1, I's M, 0, MYl Y N I'Y) VW] (1, 1) [[h),

)
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ey NP SR
(ID) T
where we contract the two boldface indices. These
two different ways of contracting indices lead us
to the two independent (A, 1) occurrences mentioned
above, after we have carried out the symmetrization
of the upper, and of the lower indices and made
the resulting tensors traceless. Once this has been
done the results of Sec. III can be used in almost
a mechanical way to obtain the desired results for
the matrix elements of the octet operators for the
two cases under consideration. One can choose suit-
able linear combinations of the two sets of results
if desired. It may be mentioned that the above
construction does not, in general, lead automatically
to two mutually orthogonal representation spaces.
In the following we are not concerned with any
normalization factors, and are satisfied with giving
the (I, M, Y) dependence of the matrix elements.
Before proceeding further with our calculations,
we refer to the following observations made by Lurié
and Macfarlane. The operators ¢y, 9,, 9. conserve Y;
F.raise Y to Y 4 1;G, lowers Y to ¥ — 1. Further,
the set

(V.6)

(—g+/\/§7 gu 9'—/\/é) (V7)

can be looked upon as the M = 1,0, —1 components
of a spherical vector with respect to Rs(I). F, be-
have as the M = 41, —1 components of a spherical
tensor of rank £ with respect to Rs(I); so also the
G.. These observations immediately lead to a major
simplification, in that we can use the Wigner—Eckart
theorem for B;(I) and write, with Lurié and Mae-
farlane,

(V.81)

W3 I M £ 1, Y] g, ey IMY) = FVECUIL, 1, I M, £1, M &= DgQuI ¥ N I'Y)YN|| 1, 1) ), (V.8i)

N3 I, M £ 3 Y + 1| 5. [ IMY)

N I M 23, Y — 1] 6. s IMY)
=C(, 3 I, M, +£3, M =%

=CU, 5 I'; M, £3, M = HFOuIY; NI, Y + DWW (A, 1) [,  (V.8iid)
NGOWIY; NI, Y — DV (1, 1) [w),  (V.8iv)
(V.8v)

N3 IMY] o s IMY) = YOIV NuTT) W] (1, 1) [ha).

In the above relations, the M dependence is carried
by the CG coefficients. Our problem then is to obtain
the (I, Y) dependence, that is, we have to determine
the functions 4, ¥, G, and V; the reduced matrix
element (\'u’|] (1, 1) |[Au) is thereby defined by these
relations.

We, thus, really have to calculate only the (I, ¥)
dependence of the matrix elements of the suitably
chosen operators 8}, S;, S5, Si, S; and S;. Actually,
we do not have to deal with tensor operators, but
can equally well work with a set of states having
the same transformation laws under SU; as the
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operators. The (I, Y)-dependent factors that appear
on the right-hand side of (V.8) are just the ones
that we should use to couple states |\u; IMY), and
states |11; IMY), transforming as S?, to obtain pro-
duct states of type [N« ; I'M'Y"). Formally speaking,
the only difference between dealing with matrix
elements of tensor operators, and coupling of states
is, that in the former case we always deal with both
the initial and final states in the same space, while
in the latter we have two distinct spaces to start
with and the final states are defined in the product
space. Beyond this, the former, quantities involve
“reduced matrix elements” which have no analog
in the latter. The important point for us is that
both involve the same Wigner coupling coefficients.
We use this fact in our calculations below.

We divide the computation into two cases, cor-
responding to the two occurrences of (A, wx) in
(I, ) ® (A, u) which we denote by (), u), and
(A, u)s, respectively.

Case I. (N, p) — (k, w1

This corresponds to (I) of (V.6). Let us define
the tensor with A upper and x lower indices of this
case by

R:‘.ln;.'. = gﬂSﬁTang np' (Vg)
where R is already symmetric in all of its upper
indices, and all of its Iower indices appearing after
the comma. Also note that the only nonvanishing
traces of R correspond to contractions of the lower
index written before the comma and an upper index.

Let us rename ¢ as n; and define the tensor ob-
tained by symmetrization of R with respect to all
lower indices, namely,

R:‘l"". "m Z R ﬂl 1Nttty (V‘IO)
The nonzero traces of B are of the form
geRom mianin i = gRRAm I i
(7:=1;"'1I-";.1=1) 5N (V.11)

This observation immediately leads us to the con-
struction of the following tensor:

1
TN+ u+1

X 3 Zgn.g Rem:

=]l =1

Pml“'m)‘ _ le...m,\
nicten, EPRRET N

TMi—ymitr s omi
TR TS SIS 7 I ]

(V.12)

which is separately symmetric in its upper and lower
indices and is also traceless. It thus provides us with
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a basis of our UIR (A, u),. In terms of tensors S
and 7', we have

1
P:l”‘ nm)‘ fS n 2
1 ,;g ﬂ. ﬂblﬂk+1 " )\+,u+l
[ A P s
X 20 22 gngsgdSETa . (V.13)

t=1 §=1

Case II. (A, u) — (\, u)2

For this case, we construct similarly the basic
tensors of the UIR (A, p),, corresponding to (II)
of (V.6), namely

1
r‘, SmtTﬁml ‘mi—ymityceemy o~
Z gs Nt u 1
A [
X D 2 guigigiSuT i misaminm (7 14)

iwl f=1

To illustrate the procedure, we shall give details
of the calculations of the matrix elements of the
operator S; for case I. Since all calculations follow
the same simple pattern, we shall only quote the
results of the remaining cases.

According to (II1.27), the state with definite
I, M, Y in the UIR (), ), is given by

¥y' = N(,Y) 3 CGi, oy I} my, my, M)

my,my

X Ni(imifama)P I iinilen,  (V.15)
where
I, Y M-
.’ll - 2 + 4: + 6 )
_I_Y -y
72 2 4 6 ) (V'16)

= j + Jay

and where we have introduced the convenient
notation

P(ix“"’ll WTi—ma A—24,)
(ja—ms,jatms,u—27,)

V.17)

for a component of the irreducible tensor P having
1 as the first j, + m, upper and j, — m, lower indices,
2 as the next j;, — m, upper and j, + m, lower
indices, and 3 as the remaining A — 2§, upper and
u — 24, lower indices.

Since we are looking only for the (I, Y) dependence
of the matrix elements, we may introduce a great
simplification by choosmg M equal to the maximum
value 7; then

VY = NI, V)NiGi, b, Jos 32)P8EI3007200. (V.18)
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We now have only to look for the term containing 02 1

S} in t}}lle right-hand side of the above equation, =~ 2 #7%=D ™ N (G 4 G+ L j — 3)
using the explicit expression for the component of .o PR 1 1
tensor P occurring there in terms of the tensors X ;: COnit 8 it =31 3)

T and 8 given by (V.13). This term is easily seen N.G i 1N,
to be x Ml bt d Do, (V.20)
)
ceeay (= 2)(w + 1+ 2j) From (V.16), and the CG coefficient appearing in
NI, Y)N , 1YY g 1
oy Y)N:Gaiiste) N p+1 the last equation, we see that
X SiTG . (V.19) V'=Y-1, (V.21)

r 17— 1
Again using (IIL.28), we have in the space of the I=I+3I-4%

tensors T, in terms of states x5 of this space, Thus the S; term of ¥}'7 is, finally, given by
N (] ] j2j2) (M —- 2j2)(# + 1+ zjl)
SiN.(1, 1 - .
Vsl Y)Nl(]h]lv]2+%:]2_% Atp+1

o . NoGide + 314D 1epre
X {C(]u]z + 3,1+ %;]n]z -5 1-13)- 12\;‘:2[]1 %,2Y — 1)2)'7(;—: T

. .o N.(i, g 31 —3 g
CG a3 T = b da— 31— p Bl E T =B el oy

Evaluating the various N factors (c¢f. Appendix B), using the known values of the CG coefficients, and
using (V.16) to express the results in terms of I and Y, we obtain the result

(W IIY| S D T+ 4,1 -4, Y - 1)

e el el (-]
”x+u+1[ 3 +I+2+1 3 +1 2+2 3 I 2

X [L;—A +1- § + 1]}*[(21 + D@+ 917 0wl DI,  (V.23)
(Ow); Y] 8 s I — 3,1 =3, Y - 1)
1 A2 Y A+ 2 Y A+p Y
=x+y+1[ 3#‘(1“2)]{[ 3 +I+2+1][ 3 (I+2)+1]

— 3
X [A g+ I+ -ﬂ} @I+ 7w, i), (V29)

We now incorporate the choice of phase made in (IV.14) and also write the result in the following standard
form:

GO+ 20) + I+ 1Y + 1]
21 + DI +u + 1)

% {l:zl;r—’i Ty g g + 1][-*—+3ﬁ - (1 — %’ - 1)][5‘——;—" Iy 21’-]}*-0,;]](1, DI, (V.25)

A+ 2u) — (I — 3Y)]
@I+ 2+ u+1)

X {[%2‘1 +I+L+ 2][2"—3+—“ - (I + 22)][&._;_# +I+3+ 1]}}@,4”(1, DiPeh.  (V.26)

(I =31 -3Y+1S ML T-1,7) =~

(O IT+5T1+5Y+1US L LY) =

Remembering that —S8; is &, [see (V.3)], and comparing with (V.8iii), we finally have
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SOWIY; (i, I — 4, ¥ + 1) = [§Hi+1["§2"+z+~‘f+z}

x{[g—"—;“——‘f+1——2—+1]["—’§~—%‘f (- )+1][ +I--¥~]}§.

= 1
SOWIY; (i, T+ 3, ¥ + 1) = mrom s 1-[" 2% _ (1 - g)]

A+ 2u Y ][27\4-,4_ __}:)]_h-u Y ]}*
x{[————-g +I+5+2 |55 (I+2 —stHIt+5 1.

In this manner we obiain the results given in the following list:

2\ + p AT R R A T
SOLLY; ey, I+ 1 Y)-——'-”‘JPI“**?’]* { 3 m‘<l+2)”1-[ 3 (I 2) l]l
AT O A @I+ +u+ D

IR CoBE) el C R N

?‘+2u)+I+IY+2} (2>\+y)+1-AY'+21

SOWIY; (WLIY) = —5 [%—] [*“ R R . —]

SR S YR )

+z§z(z+z};*x+g+1[ 5t 73 I'+3 3 2]
1 1 A+ 2

IOuLY; Qude, I = 1, Y)=2[I(21-1)]*'7\+u+1{[ L2 L]

ST N I R
x[ +1 2+1][ 5 T+3)+ 1] %5 I-5)+1

I
H
x[" LRy N 4 ][ Ly g Y},
1 1
5()\[.&1}’;(}%);,1‘*‘ Y+I)_(2f+2)§}i+ﬁ+i[

A+ 2 b4 A+u NA—u Y y
x{[ 3 +1+2+2][ 3 (1+2)][ 3 +I+2+1]},

SOWTY; 0 T~ 1 Y+ D = by [P 1 L]

SESTIONS S0 S L I ey )
1+[2%ﬁm(1+2z)][%2£“(1~§)w1:J
QI+20+u+1)

[2er-ge iz (-]

BE+w+1-3Y+2] 3’

1+

X

GORIY; )y, I + %, Y — 1) = +I + 2

X

SWTY; 0w, T = ¥ = 1) = ety 252 - (1= 1)

A+ 2p 2\ + u LY A= valt
x{[ tIty "H][ 3 ‘"(”“2’")*’@[ 3 +”‘é‘]}'
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YOulY; ) 1Y)

1

m{ BN+ 3u + N 4 +7\u)+(3+4u+2)\)—-— [1(1+1)—-—]}. (V.27)

For case II we find

1[21
SOl Y; s, I+ 1, ¥) = — 5[15:13] 1453 (21+3)(A+”3 5 2
2N+ u NI+ 2 X)]x—,u Y [u—x Y ]*
x[ 1+2][ 5 R Rl ] it
%)\+2,u)+1+1Y+2][%(2)\+u)+1—% + 2] '

SOwIY; QI ¥) = S [1%]*[“——‘3“—1 “(r+ ) ]

+%[I(Hl— 1)]*'>\+i+ 1 Pguzz][gk_}g‘ (I+§)][L%“2E" (I‘zz)]

i_ 1 1
2N+ u+ 1R — D

x{[ﬁ—g—zﬁ+1+—¥+1][g—"—i—’f+1~§+1][%-<I+§f)+1]
M (- )P e e Tt e - E

GOWIY; ) I+ 3, Y — 1) = [Ql;lzﬁ-wiﬂ[”‘;“— (ul)]

R | E

2
1 1 2A 4 u Y
(21)*>x+u+1[ 3 T1-3 1]

TSI ST
2 2)- - -2

@I+2M+p+ 1

A—p Y 2x+u_< _I’_')]
T3 +I+2+1][ 3 I+3
BOF 20 +1+37 +2]

JOWIY; O, T — 1, 7) = +

GOWIY; (a)e, I — 3, Y — 1) = +

FOuIY; (o, T+ 3, Y + 1) = +@I+ 21 +

¥

_ . S .-2)\+/x__( Zﬂ
€F(}\n1Y,(>\p.)2, I 2y Y + 1) = +(21)i *+e+11" 3 I+ P

e -l (oD 52 2]

-

YOI Y5 (AL V)

1 2 YZ
m{ @GN+ Bu + N + 4’ + ) — (3+47\+2u)“-—3[1(1+1)-——~]}. (V.28)
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It should be noted that a different reduced matrix
element, (A\u|| (1, 1) |[Au);, will appear in relations
(V.8) for this case. Also, in evaluating the functions
Y, it must be remembered that we have contributions
from all three terms of type Si, S, S, when we
expand ¥;' 7 according to (V.15).

We make the following observations concerning
the above results.

(i) Excepting for over-all signs the ordered list
of funections (V.27) of case I go over to the ordered
list of functions (V.28) of case II, when we inter-
change X and u and replace ¥ by —7Y.

(ii) If we take the differences of corresponding
functions in cases I and II, we obtain the same
functions that appear in the matrix elements of the
generators, (IV.1), (IV.2), (IV.15). Thus.

FOuIY; Qu),, I £33, Y 4+ 1)
= FOulY; Mo, I £ 5, Y + 1) = —f1.0n; IY);
SOWIY; )y I + 1, 1)
— 9ulY; ),y I £1,Y) = 0;
I Y ; () IY)
— SOIY; O)oIY) = —[I(T + DI;
YQulY; W), IY)

— YOwulY; (W) 1Y) = —3Y. (V.29)

Thus this particular combination of our expressions
corresponds to using the matrix elements of the
generators as CG coefficients. This is the canonical
way pointed out by Biedenharn.* Put somewhat
differently, the coupling scheme deseribed by

Silari — SiTml”

is the same as Biedenharn’s uniquely defined coupl-
ing scheme using the matrix elements of the gen-
erators themselves. We note that the two independ-
ent schemes used here are in the tensor framework,
‘“‘canonical.”

At this point it is worth noting that in (V.29),
Y appears multiplied by (—$£) in the right-hand side
of the last equation, whereas in the first equation
—f... appear without any such factors. The reason
for this is, that in defining an octet operator so that
it transforms exactly like an octet of normalized
states, we must take —3 X 67!y with §., and not <y
with F, [ef. (B.11)]. This is in analogy with (V.7).
Thus with f,, f, we must take —3 X 6 'Y in defining
a Wigner coefficient up to an over-all normalization.
Also in the expansion (V.15) of ¥;'¥, we must
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remember that —3 X 67383, and not S, is the
normalized state.

(iii) The two expressions for  in (V.27) and (V.28)
have the forms

Yyo = a[2Y’ = I 4+ 1) + e\, p)] + b.5Y,
(V.30)
e =3\ 4+ ¥’ + M+ 3\ + 3y),

where a, b,, b, are functions of A and u. Since,
according to the above considerations, two unknown
parameters enter (as two independent reduced ma-
trix elements) in the general matrix element

Nu; IMY| 85 [Ny IMY),

it is clear that the latter will have the form of the
well known two-parameter mass formula of Okubo."

VI. WEYL REFLECTIONS AND U-SPIN

In discussing electromagnetic processes in the
context of SU; invariance for the strong interactions,
it is useful to employ the language of U spin, intro-
duced by Levinson, et al.>* The electromagnetic in-
teractions conserve U spin, and violate I-spin con-
servation. Macfarlane, Sudarshan, and Dullemond®
have used the method of Weyl reflections, one of
which takes I spin into U spin. We use the approach
of the latter authors in deriving an explicit and
general connection between 7-spin and U-spin states.

It is convenient in this section to dinstinguish
between operators and eigenvalues by using carets
on the former. The U-spin subgroup of SU; is an
SU, subgroup generated by (6*E.,, 27 — 1I,). All
states belonging to a U-spin multiplet, have the
same eigenvalue for the electric charge operator @
where, as usual,

Q=1 +17. (VI.1)
The operator — bears the same relationship to
the U-spin subgroup of SU;, as does hypercharge
Y to the isospin subgroup.

The Weyl reflections form a finite subgroup of
SU,, and have the same structure as S, the permuta-
tion group on three objects. Following Okubo,** we
concentrate on the operator Wy, (W, for short)
which cyclically permutes the states 1, 2, 3 in the
UIR (1, 0). Using the variables 2™ of Sec. I, which
transform according to (1, 0), W is defined as follows.

W:z'—2®, ">’ L2 (VL2
22 C. A. Levinson et al., Ref. 12,
23 A. J. Macfarlane et al., Ref. 12.
24 8. Okubo, University of Rochester lectures (unpublished)

(1964).
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If we write W as a 3 X 3 matrix, it is unitary
unimodular, so that W & SU,. Further, from (VL.2)
above and (1.3) we have

WE.W' = B.,, WLW' =37 31, =0,

WiW' = ~L-Y -0, 1

W(fz’ fz; ?}W§ = {{?2: gay - Q)

To derive the form of W in (0, 1) we note that (V1.3)
must hold for the generators in any UIR. Since these
are known for (0, 1) in (I.4), and since W must be
unitary unimodular, we derive:

Y2 3 Ya, Yz~ = Yi. (V14)

Equations (VI.3)-(VI.4) tell us how W aects on
upper and lower indices respectively in any tensor

W:yy = —ys,

UNIFIED REPRESENTATION THEORY OF §U.

T. Our purpose is to derive the effect of W in any
UIR (\, ).

The orthonormal basis ®47 introduced in the
VIR (A, n) in Secs. III and IV is labeled by the
quantum numbers (I, M, Y), which are the eigen-
values for the diagonal operators (I*, I,, ¥). An
alternative basis in this same space is x7.”¢ with
the operators (0*, U, —Q) diagonal and having
eigenvalues (U, U,;, —@Q). Since the two sets of
operators are unitarily related by W, (VL.3), the
ranges of eigenvalues of the two sets are exactly
the same; and the states x5.7°, with respect to
which (0%, U,, —Q) are diagonal, are gotten by
applying the unitary operator W to a state &3¢
with the eigenvalues (U, U,, —Q) for the operaiors
I¢, 1., ¥). Thus, using the notation (V.17) for
components of an irreducible tensor T, we develop:

Xg;.'Q = W‘bg;_g = <"'1)U+§Q_§{H2“>N3(Uy -Q) Z C(1:7:.U; mymU)N (jimy; izmz)WTiiii:::::mi:i;i;

myy

jx=

U _ @, 2—s
g 4T 5

By means of (VI.2) and (V1.4):

@ _A—n,
= % | (V1.5)

Xg;“o = (‘I)Uﬂoh%()‘””)Na(U, -~ Q) Z C(j1j2U; mxszs)Nl(jlm1§ jzmz)(“1)""""'"’T&3§f~2Z?Ziﬂiiﬁliiﬁii.

mama

(VL8)
Re-express T in (V1.6) in terms of & using (I11.28) and (IV.14):
xg;—o = {“I)U.}N—*(ng)Ns(U; -Q) E (”I}B-i‘wmlc(jlj‘zU; mymaUs)
. . A~ ] A= 35 — m~ fy = My Bfp — @ — -t
X Ni(jim,, ?2m2)[N1( 3}2+ i ’ 2 Ul ;“ 322 2 ' L ; mﬁ)}
x"-'jl_‘-?nl I‘Wj'z""mz _)\_3_'}1‘—"77@1 3]‘2"[&“““?71«2 )
x ]Z C( 2 L] 2 H I} 2 4 2 ? M
X Nz()\ - j;2+ my , L :}zz"' Mo , 1){2\73(1, Y)]q(m1)~z+§&'+m+zn)¢$y;
M=3Q-~1U, Y=2U,+1Q. \2%)]

This rather forbidding expression ean be somewhat simplified: the factors N, are identical and cancel out;
while the factors N,/N,; can be rewritten as a CG coefficient. We then have:

Xg;-Q = Ns(Us "Q) Z (—l)g'i‘mm”U”HHQ*Y)C{}}J}U; mlszs)

mamal
Bjﬁ s My M)

XC()\“]'1+m1 B Ja = My I.)\‘"3j1—m1
Y y 4

2 2 2 ’ 2
Atw, I+1 ¥ A+2% I, Y rAt+tp+1 A+ I-U+]1
XC( 6 T3 T3 6 st 3 2 g T 2
Y I Y -2 Y 1
L b, - 2R IR L, B +I+—2—+§)<bk’. (V18)
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[It may be noted that the last CG coefficient in
(VI1.8) is numerically unaltered on replacing I by
—I -1

Equation (VI.8) gives explicitly the unitary trans-
formation that takes us from the (I, ¥) basis to
the (U, @) basis. It may be noted that as W takes
the I-spin SU, subgroup into the U/-spin SU, sub-
group with no phase changes of any kind, the U-spin
wavefunctions x of (VL.8) obey the standard Condon—
Shortley convention as far as U spin is concerned.

The Weyl operator W used by us has the property

W= 1. (VL.9)

Macfarlane, Sudarshan, and Dullemond® use an
operator W' with the property

(W =1, (V1.10)

to relate U spin to I spin. W' is defined in the
UIR (1, 0) as interchanging states 1 and 3, leaving
2 alone. It turns our that the U-spin eigenstates
obtained by these authors differ from ours, essen-
tially, only in the sign of U; and in the interchange
of U-spin raising and lowering operators.

Finally, we make a few comments concerning the
triangular representations, i.e., UIR’s of type (A, 0)
or (0, u). We shall look at (A, 0). The corresponding
irreducible tensors

T,,.,,,.,...,,,x

have only upper indices in which they are symmetric;
and there is no problem of tracelessness. Now in the
UIR (1, 0), the states 1 and 2 form an isodoublet
while 3 is an isosinglet. Similarly, 2 and 3 form
an U-spin doublet, 1 is a U singlet. It is then obvious
that in such a representation, any component 7/:™
of T simultaneously possesses a definite isospin and
a definite U spin:

(VI.11)

In other words, in siuch representations the operators
1, ¥, 0% U, @ are all simultaneously diagonal.
We can also easily establish the equations:

=ieD -0 —2n) =20 - B,

I =3, =3 — jy — my).

(V1.12)
Q=—-3QU)+ 30 -2U) = —2U + @,

by essentially counting indices in 7. The above
remarks are meant to illustrate the fact that these
simple properties of triangular representations® are
trivially obvious when we think of these representa-
tions in terms of tensors.

28 8, P. Rosen, J. Math. Phys. 5, 289 (1964).
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APPENDIX A

This appendix contains the caleulation leading fo
the factor N, appearing in (I11.26).
According to (II1.9) the invariant 9% has the form

M= T P (A1)

Considering all terms in (A1) eorresponding to fixed
1, Y, and M, there is a pair of minimum values of
7, and j, compatible with the given Y that can lead
to the given I; from (II1.10), namely,

=3+ 1Y 4 0 — W),

(A2)
it = 3 — 1Y — M\ — p).
If we consider the pairs of values
G ) = GU7 20, G + 5, 27 + B,
@@L E"+D, G ET -,
or (Ggu+ "~ &0,  (A3)

then each pair has the same Y, and these are all
the pairs that will lead to the given I in (Al).
However, the subsidiary condition (II1.22) allows
us to express all the terms ¢ 3**"in (A1) with (5,72)
belonging to the set (A3) as multiples of the “lowest”
or basic term 4" "*"™_ In this way, the coeffi-
cient of L™ " ™ [* in (A1) is

NI, V)T = X0 IN:GiioD)I?,  fud 85 in (A3). (A4)

fids

The upper limit to the summation in (A4) is j; = I
or j; = }u, whichever occurs earlier in (A3). Thus
we have two cases to consider:

Case I—upper limit j, = £, In this case we have

- L ey (A5)
ie., |
Y 2 3 — w);
substituting for j, in terms of j, and Y,
Je=h — % 3 — ), (A6)

and taking N, from (I111.23), we have
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[N,IY)P
_ xi @I + DIEBEN + ) —I—%Y]'[l(k+2n)—1+‘Y1'
i 20— T~ 3Y 30— )]0 =202+ T+ 1 =3V — 3 — )]'e+ Y + 30— p) — 23]V

(A7)
Writing ¢ = 2j;, we must compute

P3| e 7 AE”WW+Y+5“‘”“”qi
SIHATHI0— . (A8)

In (A8), ¢ increases in steps of unity, and the range of ¢ is all integers that makes the argument of each
factorial nonnegative. If we call the factors in (A8) as p! ¢! r! s! we find the following rules:

pt+qg=32\+u —I-3Y, p+s=3N+2u —I+13Y,
g+r=35C0+uw+I+1-~3Y, r+s=5x4+2w)+1+1+3Y, (A9)
p+g+r+s=r+p+1l
The last sum rule in (A9) suggests that we look at the multinomial expansion

O+ p + Diabed’ (AL0)

pratr+s=A+u+l P!Q!T!S!

(a+ b +c+d))\+u+l —
The remaining sum rules in (A9) suggest that we take
= 2y, b = xz, ¢ = wz, d = wy

and evaluate F by looking for the coefficient of

£ — x%(2>\+n)—-1—1}yy%()\+2u)—l+§yz§(2)\+p)+1+1-§Yw§()\+2u)+1+1+§Y
in (A10). Howevera + b+ ¢+ d = (z + w)(y + 2) and we get
= ___.._.l_.____ 3 3 A+u+l
F = e coefficient of £ in [(x + w)(y + 2)]
— N+ w4+ D! .
(w——I—-Z)!C\——{——%-”—I—F >(2H'”+1+1— )("+2“+1+1+ 7,
3 2 3 2 2
(Al1)
Using (A11) for F in (A7), we obtain N; for case I. where
This agrees with (I1I1.26). However, this expression Pl = plaemediom A2io (B3)
for N, is invariant under the replacement A < g, ama) 72 & Gamms datma.u=2ia)y
Y — —Y, which is just what distinguishes the and
cases I and II. Therefore our solution for N, holds N . 1
for both the cases. o= A+ R0 - ),
(B4)
APPENDIX B jo= 1 — 1Y — L\ — p).
For ready reference, we list bel'ow the m?,in results e inverse to (B2) reads
of Sec. III. The normalized basic state with proper
choice of phase in the UIR (A, p) is T = [N,Gimgama)] ™" Z‘ CGugad ; mym.M)
. - I,¥Y _ (__ I-3Y-3Qa+2p)q, 1. ¥ Bl . _
Ihai; IMY) = @i = (=1) i, (BD) X NaGu:DINAI, VIR, (B5)

¥y’ = NI, Y) Z CGy G2y I myy may M)

My, My

X N(Gimijem)TGims,  (B2) Y =23 — §2) — 30 — p) (B6)

where
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The N-factors:
Ni(imgoms) = [(MuDPIG + m) G — ma) !N = 231G + m) (G — ma) i — 20) 17, B7
No(iugD) = [@ + DN = o+ o — DM — 4o + 5 — DI
X [+ G = DG+ 5+ T+ DI — 201 — 2007, (BY)

-3
Mmqum+nm+n+mﬂ@%ﬁ+z+§+Q@%ﬂ+z—§+ﬁq. (BY)

Standard octet operator: In analogy with the the octet operator of SU; should be arranged as:

standard form of the components ., 5. 9., V39, 5_; —3/6}: G, o) (B11)

(=8./V2, 8., 8-/V2) (B10) 80 as to transform exactly like a normalized octet
of the spherical vector operator, the components of of states obeying our final choice of phases.
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Formulas are given for the expansion of multipole fields of arbitrary tensorial character into
multipole fields about a shifted origin. The expansion coefficients are given as matrix elements of
the translation operator. In analogy to the matrix elements of the rotation operator, we introduce
for these matrix elements a standard form which represents a parallel displacement of the coordinate
system along the z axis. Any arbitrary translation of the coordinate system then consists of a con-
secutive application of a rotation, a standard translation, and a rotation. Since the multipole fields
form a complete set any arbitrary function can in principle be expressed in a shifted coordinate
system by means of the given formulas. All mathematical derivations are given.

I. INTRODUCTION

N elaborate theory has evolved about the an-
gular momentum conservation law.'”'* The
reason for this is the prevalence of central potentials
in problems of interest in quantum mechanies. Thus,
for example, all electrons move under the influence
of a common central potential, while the mutual
interaction between electrons, which is not spher-
ically symmetric about the center of mass of the
atom and leads to exchange of angular momentum
between the individual electrons, can be treated as
a perturbation.

The conservation of linear momentum, on the
other hand, has not led to a comparable development
of mathematical tools. The transformation to center-
of-mass coordinates in general exhausts the transla-
tional symmetries of the problem: a spherically
symmetric potential remains invariant under rota-
tion of the coordinate system, while it changes form
when the origin of the coordinate system is shifted

1 E. P. Wigner, Group Theory and Its Application to the
Quantum Mechanics of Atomic Spectra (Academic Press Inc.,
New York, 1959).

2 H. Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc.,, New York, 1931).

3 C. Eckart, Rev. Mod. Phys. 2, 305 (1930).

‘{H.B.G. éasimir, “Rotation of a Rigid Body in Quantum
Mechanics,’” thesis, Leyden, 1931.

§ B. L. van der Waerden, Die Gruppentheoretische Methode
in der Quantenmechantk (Julius Springer-Verlag, Berlin, 1932).

¢ U. Fano and G. Racah, Irreducible Tensorial Sets (Aca-
demic Press Inc., New York, 1959).

7 A. R. Edmonds, Angular Momentum in Quantum Me-
cha(]n;cs (Princeton University Press, Princeton, New Jersey,
1957).

8 M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).

*P. H. E. Meijer and E. Bauer, Group Theory; The
Application to Quantum Mechanics (Interscience Publishers,
Inc., New York, 1962).

10 ). M. Brink and G. R. Satchler, Angular Momentum
(Oxford University Press, Oxford, England, 1962).

11 A P, Yutsis, I. B. Levinson, and V. V. Vanagas, Mathe-
matical Apparatus of the Theory of Angular Momentum
(Translated from Russian) (Published for National Science
Foundation, Washington, D. C,, 1962).

away from, say, the location of the nucleus in an
atom. Nevertheless, there exists a large family of
problems for which the expansion of wavefunctions
or wave fields around some point other than the
fixed origin or center of mass, is needed. For example,
in the quasi-deuteron effect, a proton and neutron
colliding within a nucleus absorb a photon and are
as a result emitted as fast particles. This process
is an electric dipole transition in the center-of-mass
system of the quasi-deuteron, the system consisting
of the involved proton and neutron, but it is of
arbitrary multipolarity in the center-of-mass system
of the whole nucleus. Similarly, the photoproduction
of = mesons on nucleons is mostly a magnetic dipole
transition in the = meson—nucleon system and, again,
it is of arbitrary multipolarity in the center-of-mass
system of the whole nucleus. Another set of prob-
lems is exemplified by the « decay of heavy nuclei
where one has to find the probability for an « par-
ticle to be formed at the surface of the nucleus.
Here one has to expand the nuclear wavefunection,
usually approximated by a harmonic oscillator wave-
function centered at the center of mass of the nucleus,
into other wavefunctions describing the o« particle,
centered at a point at the nuclear surface. In a sense,
solid-state physics can also be considered to belong
to this family of problems. One could even call solid-
state physics “The problem of the shifted origins”
par excellence: a wave traveling through a crystal
is scattered by an atom producing outgoing spherical
multipole waves which in turn are scattered. When
considering the rescattering of these waves by some
other atom one can expand them into multipole
waves about that other atom. The first two examples
involve the expansion of a free field in a shifted
coordinate system, while the last two involve more
general functions, Naturally, the latter can be ex-
panded in terms of a complete set of free-field
solutions.
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These examples have the following feature in
common: g function consisting of one or of few
multipoles (angular momentum eigenstates) has to
be expanded about a shifted origin. The “natural”
mathematical technique for performing a displace-
ment, the Fourier transform in Cartesian coor-
dinates, is, however, inappropriate since it mixes
all multipoles. A more direct method which pre-
serves the multipole character seems called for.

In the present paper we derive formulas for the
displacement of free multipole fields. The term
“multipole fields” is used here and throughout this
paper to denote solutions of the wave equation
(V? 4+ k&*) ¥ = 0 which are eigenstates of the total
angular momentum operator. The fields may have
scalar, spinor, vector, or any other tensorial char-
acter. Calling the ‘“orbital” angular momentum L,
the “tensorial” angular momentum S, and the total
angular momentum J = L -+ 8, a multipole field
is thus specified by the quantum numbers J, L, S, J.,,
and k. For a scalar field S = 0 and, following the
general usage, we then write [, m, and % for the
quantum numbers.

Many of our results are contained in the literature.
They are, however, not easily available. As a matter
of fact, we found the references only after having
rederived most of them. The characteristic of being
hidden was re-emphasized in that an additional
genealogic tree of references was called to our atten-
tion'? after having submitted the paper to the
Editor. It is very likely that still further references
exist in the literature.

In addition to reporting some results which we
still have not found in the literature, we have two
purposes in mind in presenting this paper: one
concerns the point of view with which we propose
to look at the problem; the other concerns the com-
pactness of the form in which the results are pre-
sented and the simplification of the derivations.
Beginning with the first, we would like to focus on
the representation of the translation by an operator.
We thus introduce a “standard translation matrix,”
T(ko), Eq. (4) below, which we choose to describe
a translation of the coordinate system along the z
axis by a distance p. Any general shift of the coor-
dinate system is then given by D(R.)T(kp)D(R,)
where D is the usual rotation operator: one first
rotates the coordinate system so that the z axis
points in the direction of the displacement (rota-
tion R,), one then shifts along the z axis, and lastly
rotates into the final position (rotation R,).

32 12 Referee (anonymous), who indicated Refs. 17, 18, and
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The previous treatments have dealt instead with
the parallel displacement which is a special case
of the general displacement (parallel displacement
plus a rotation) in that the second rotation, R,
is the inverse of the first rotation, R,. We would
like to denote the parallel displacement operator by
S, which is thus defined as 8§ = D(R)TD(R,);
see Eq. (19) below. This is evidently a more com-
plicated quantity than T itself. However, we use
the operator S where it is advantageous to do so.
As a matter of fact, the derivations of the matrix
elements of S are not more involved than those for
the matrix elements of 7. The reason for this is
that S explicitly manifests its angular momentum
properties [in the Y,,(5, ¥) in (19)], while they are
somewhat obscured in 7. In fact, we derive the
matrix elements of T from those of S by the special-
ization to vanishing rotation angles, which then re-
sults in a translation along the z axis. The reasons
for choosing the z axis in the definition of the
“standard 7"’ are almost self-evident; after all, it is
the usual quantization axis for the spherical func-
tions.

The T’s form a representation of a Lie-group.'"?
We are not concerned with this aspect here.

Concerning the second point, the achieved sim-
plifications are demonstrated by the fact that all
proofs are contained in this paper. As a matter of
fact, most of the mathematical difficulties are asso-
ciated with the case of incoming and outgoing
spherical waves, where the radial part of the multi-
pole fields is given by the spherical Hankel functions
R{®(kr), a« = 1, 2. The case of standing waves,
which contain the spherical Bessel functions j,(kr),
is treated in a few lines [Eqgs. (10)-(14)]. The results
are also very simple and compact when written in
terms of 3-j and 6-7 coefficients. It is both gratifying
and desirable to have the expressions in this form;
the latter because of the many known characteristics
of these coefficients which could come in handy in
manipulations one may have to perform in applica-
tions.

Another large family of problems, which do not
involve explicitly a translation operator, is very
closely related with the subject of the present paper
and the formulas given here can easily be adapted
to be applicable to them also. The characteristic
feature of these problems is the requirement to
expand a function of a vector r in terms of the
vectors g, and g, which fulfill the relationr = g, — g,.
After the expansion of the function of r into multi-
poles one returns to the problem of this paper when
one formally introduces p, = —R and considers p,
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to be the displacement vector [see Eq. (10) below].
The point of view is just somewhat different in that
in the original problem g, and g, have the same
character, in contrast to the concept of the transla-
tion operator where the “shift vector” and the
“radius vector” have a different meaning. Although
every funection of two vectors can be expanded into
the complete set of products of two multipole fields,
this expansion will in general have very little in
common with the franslation operator. It is the
“geometry” r = g, — p, linking the three involved
vectors which establishes this connection. The sim-
plest example of a problem of this kind is the
Coulomb interaction between two electrons in an
atom which, being spherically symmetrie, involves
just the expansion of a scalar monopole field. In the
nuclear shell model, the force between two nucleons
can also be expanded in a similar series. However,
because of the spin dependence of the nuclear forces
the field has not only scalar but also tensor character,
ie., 8§ # 0 in the notation of Eq. (35). It involves
of necessity, therefore, components with I = 0 in
order to be able to couple to J = 0 {see Eq. (35)]
which is necessary since the potential energy must
be a scalar. Also, here not only the limit & = 0 is
needed, since the force does not have a 1/r form;
rather a Fourier—Bessel transform over k has to be
performed. Another very important case in which
the expansion of higher multipole fields appears is
in the Green’s function of the wave equation,
G(p1, p2), in which the singular part again is only
a funetion of r.

Although the problems of this family do not con-
form to our point of view in that they do not contain
the translation operator, we give the relevant expan-
sion formulas for completeness.

In Sec. II we give a short summary of the litera-
ture on this subject as far as we are aware of it.
In Seec. III we define the basic quantities, i.e., the
relevant coordinate systems, the operators, and the
matrix elements, and we derive the basic formulas
for the translation of standing scalar wave fields
of arbitrary multipolarity. In Sec. IV we discuss
the extension to the case of incoming and outgoing
waves. This part requires the heaviest mathematics.
Some of the mathematical points concerning this
section are treated in Appendices A and B. Finally,
in Sec. V we derive the translation formulas for
multipole fields of arbitrary tensorial character.

II. HISTORICAL SURVEY

In this section we review the historical develop-
ment of the mathematical treatment of the transla-
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tion transformation. We do not, however, concern
ourselves at all with reviewing those many papers
whose contribution lies in the application of the
mathematical tools discussed in this paper but con-
tain no new development of the mathematics,

The first translation transformation is due to
Legendre™ whose series 1/r=2_ (o%/ R***) P (cos ©)
being the expansion of the monopole potential 1/r
into multipoles around the point z = —p in the
old coordinate system, is nothing but the lowest
term in the expansion in powers of k of the monopole
field A$™ (kr)Y oo(8, ¢) which in our notation is

kké“)(kr) YO(}(e) ¢)Ik=0

= }; kR (kR)Y 1o(®, T Lo(—kp)lmo. (1)

The generalization of this relation to arbitrary
multipolarity in the limit of k = 0, i.e., the expansion
of the so-called solid harmonics, was performed by
Carlson and Rushbrooke' and independently by
Rose.® Recently, this subject has been treated again
by Sack.'®

There exist, however, earlier papers in which the
translation of multipole fields was either treated
directly or used in the solution of specific problems,
sometimes in the form of a translation operation
and sometimes as a product decomposition for the
case r = p, — @, discussed in the introduction.

The first of those of which we are aware is by
Lord Rayleigh.'” In that paper he treats the prob-
lem of what would now be called an “artificial
dielectric,”” i.e., of an arrangement of spheres of one
material in a rectangular lattice embedded in another
material. One may consider this paper to constitute
the beginning of modern solid-state physics. He
treats the problem in the limit of long wavelengths
by expanding about a given sphere the potential
associated with the neighboring scattering spheres
and summing explicitly the contributions from the
nearest neighbors. This paper thus contains implic-
itly the expansion of the regular and the irregular
solid harmonics about a shifted origin, and the result
is obtained by direct computation. The generaliza-
tion of the same problem to finite wavelength was

13 A, M. Legendre, Mem. Math. Phys. Acad. Roy. Sci.
Paris 10 (1785) for historieal details see, e.g., E. W. Hobson,
The Theory of Spherical and Ellipsoidal Harmonics (Cam-
brxdge University Press, London, 1831), p. 16.

14 B, C. Carlson and G. S. Rushbrooke, Proe. Cambridge
Phﬂ Soc. 46, 626 (1950). Note also extensions of this work

y R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 628
(1951), 85, 149 (1952), and by P. R. Fontana, J. Math.
Phys. 2, 825 (1961).

5 M. E. Rose, J. Math. and Phys. 37, 215 (1958).

18 R. A. Sack, J. Math. Phys 5 245, 252, 260 (1964).

17 Lord Ray}exgh, Phil. Mag (5) 34, 481 (1892}
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performed by Kasterin'® extending operator tech-
niques introduced by Lord Rayleigh.'* This paper
thus contains, but only implicitly, the expansion of
arbitrary multipole fields about a shifted origin.
Explicit formulas for the translation of multipole
fields were developed in a series of papers beginning
with a paper by Sato.” He derives the matrix
elements of 7 for A{* (kr) in terms of a power series
in kp. He gives only recursion relations for the co-
efficients of the series. The derivation is based on
the integral representation Eq. (29) derived earlier
by Syono*' on the basis of a theorem by Weyl.*
Sato rederives (29’) by Fourier transform techniques,
which turns out here to be a straightforward but
clumsy method. Friedman and Russek® generalize
Sato’s work to displacements into an arbitrary direc-
tion, i.e., they calculate the matrix elements of the
parallel displacement operator 8 for both j,(kr) and
hi{® (kr) which they give in terms of 7 (kp); they
give explicit expressions involving summations for
the expansion coefficients. They refer for the integral
representations (29’) and (30’) to Stratton,® who,
unfortunately, sweeps under the rug the essential
point of Weyl’s theorem, namely, the problems asso-
ciated with the continuation of the region of inte-
gration into the complex domain. The work was
continued by Stein®® who recognized that the expan-
sion coefficients of Friedman and Russek®® contain
3-j coefficients. He also generalizes the previous
results to include vector spherical harmonics; he

Fia. 1. Coordinates in a rotation—translation transformation.

18 N. Kasterin, Verslagen Kon. Akad. van Wetensch.,
Amsterdam, Wis-en Natuurk. Afd. 6, 460 (1897/1898).

1* Lord Rayleigh, Theory of Sound (Dover Publications,
Inc., New York, 1945), Vol. 2, 2nd ed., Secs. 329, 330.

*0Y. Sato, Bull. Earthquake Res. Inst. Tokyo Univ. 28,
1, 175 (1950).

2t 8. Syono, Proc. Phys. Math. Soc. Japan, 3rd Ser., 20,
100 (1938); Geophysical Magazine 12, 67 (1938-1939).

2 H, Weyl, Ann. Physik 60, 481 (1919).

23 B. Friedman and J. Russek, Quart. Appl. Math. 12,
13 (1954).

24 J. A. Stratton, Eleciromagnetic Theory (McGraw-Hill
Book Company, Inc., New York, 1941), Sec. 9.29, pp. 577, 578.

* §, Stein, Quart. Appl. Math. 19, 15 (1961).
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uses Stratton’s definitions for the vector spherical
harmonics. Stein’s expansion coefficients still are
sums over several 3-j coefficients. Cruzan® sums
them up to one term for which he gives an explicit
expression. We find that they can be written simply
as a product of 3-j and 6-j coefficients.

The integral representation (30’) has also been
derived by Erdelyi®” using the differential operator
technique going back to Lord Rayleigh'® and Max-
well.* His paper is based on previous work by
Whittaker® and Van der Pol.*’

There exists also an independent explicit calcula-
tion for the shift of spherical vector functions with
J =0, 1, and 2 by Ament.*

The product decomposition for the regular multi-
pole fields 7,(kr) Y ,..(6, ¢) as a function of g, and g,
forr = g, — p, was obtained by Kohn and Rostoker®*
by essentially the same method as used in this paper
[see Eq. (10) and following]. They used it in expand-
ing the free-wave Green’s function in connection with
the solution of the Schridinger equation for crystals.
Their work is a continuation of the method intro-
duced by Lord Rayleigh.'”

1. THE BASIC FORMULAS

In a rotation—translation transformation (Fig. 1),
one can always perform the operation in three con-
secutive steps: (1) Rotate the coordinate system
(zyz) so that in the new orientation (z'y’z’) the
z axis is parallel to the direction of the translation
[Euler angles (0, ¢, ¢')]; (2) translate the coordinate
system to position (z''y"’2’’) (shift vector g); (3)
rotate the coordinate system to bring it into the
final position (z/”y’"’2”"’) [Euler angles (afy), not
indicated in Fig. 1].

The steps (1) and (3) are performed by means
of the well-known rotation operators D. We can thus
concern ourselves exclusively with the translation
operators. We would like to call these operators T,
which can be considered to stand for “translation
operator’” or “Taylor’s theorem.”

In the shift along the 2z axis (Fig. 2) the angle
¢ does not change. The ¢ dependence thus remains
unchanged and we omit reference to it for the time
being. Our aim is to express the function (6, r) in
terms of the new coordinates (©, R).

Since in the translation the values of the funetion

26 O, R. Cruzan, Quart. Appl. Math. 20, 33 (1962).

27 A, Erdelyi, Physica 4, 107 (1937).

28 J. C. Maxwell, Electricity and Magnetism. (Clarendon
Press, Oxford, England, 1873), Part 1, Chap. 9.

29 BE. T, Whittaker, Math. Ann. 57, 333 (1903).

30 B, Van der Pol, Physica 3, 385, 393 (1936).

31 W, 8. Ament, NRL Report 5307 (April 1959).

32 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
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Fi1c. 2. Coordinates in a pure trans-
lation transformation.

at a particular point in space are to remain un-
changed, we have

ftr, 6) = JR, ) ®

if B, © fulfill the “geometry” of Fig. 2. We would
like to express the ‘“‘new’ function f by means of
the translation operator in terms of the ‘“old” func-
tion f. We are thus looking for an operator which
would give

fR,0) = T{(R, ©). @)

Together with (1), this says that we are looking
for an operator T which gives the value of the func-
tion f at the point 4 in terms of the values of the
funetion f in the vicinity of point B. Clearly, this
1s fulfilled by

T(p) = €™, )

i.e., by Taylor’s theorem. We used above the expres-
sion “in the vicinity of” instead of “at’” because
of the appearance of derivatives of all orders in (3).
Thus the values of the function f in an arbitrarily
small but finite region around point B are needed.
As is commonly done, we replace the operator grad
by the Hermitian operator p = —1 grad and obtain

T(p) = €. @3’

Actually the form (3) or (3) is valid in general,
for arbitrary directions of the displacement p. For
T, in contrast to S, only the case in which p, = p, = 0
is needed.

We now apply the translation operator to a scalar
multipole field. We thus want to evaluate:

7N Y100, @) = THER)Y 1.(0, ¢)
= ; ]L(kR) YLm(®7 ‘P)TYI.)G{;P),
where we have introduced the abbreviation

TP (ke) = (jukR)Y 1n(©,¢), 6" "1 (kR) Y 1n(®, ¢)) (5)

for the matrix elements of the displacement op-
erator. We have chosen this abbreviation in analogy
to the notation of the rotation operators; in the
matrix elements of 7' it is m that remains unchanged
while in the matrix elements of D it is j that stays
fixed.

@
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We note some properties of 7. From (8’) it follows
immediately that T is a unitary operator for real
displacements. Thus the effect of two consecutive
displacements z and y is simply

TR @+ 1) = 20 T @T ). (6)
There appear no normalization constants. The in-
verse shift (—x) is represented by

T (—2) = TiD@)* = T7 (@), ™

the last equation being a consequence of the reality
of the matrix elements T3, The reality depends
on the fact that the operator does not contain any
¢ dependence, and on the definition of the function
fim = Yi1.(0, ©)ji(kr); additional phase factors in
fim could lead to nonreal matrix elements.

Finally, the commutation relations of the op-
erators T and D for infinitesimal translations and
rotations are most easily obtained from the well-
known commutation relations of the linear and
angular momentum operators. We do not need them
here.

We now proceed to the evaluation of the matrix
elements of 7. From (4) we find immediately

T () = f d cos® do B’ dR
X jL(kR) Yzm(@) lp)j;(k’/’) Ylm(oy ‘P)J (8)

where we have to express r and 6 as functions of R
and ©. We have (see Fig. 2)

r = (0" + B* + 2oR cos ©),
cos § = (p + R cos ©)/(p> + R* 4 2pR cos ©)%.

The direct integration of (8) is not simple. It can,
however, be circumvented by a method which one
could call “Fourier transform in spherical coor-
dinates.” We start with the vector equation

)

r=9+R (10)
and consider the expansion of
e«'k'r = eik'peik'R (11)

with arbitrary k into spherical waves with respect
to an arbitrary coordinate system. Let the compo-
nents of the vectors in this system be (r, 6, o),
(R, ©, @), (p, n, ¥), and (k, ¢, ¢’). Then we have

X 4 V00, &)V om0, i o)
= 3 4ni VEu(0, ) V10O, Dis(iE)

X ; 4r YR8, o) Youln, W)inke). (12)
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We now multiply both sides of (12) by ¥,,.(¢, ¢")
and integrate over the direction of k, i.e., over
¢', 0, which gives

8'Y 1 (6, ¢)j: (kr)
= 2 2 4 Yo, Vi) Yiu(®, 8)j,(kR)

Ap LM
X f Yin(0', o) YEu(t, &)Y X (6, ¢’)d cos ¢ dy’
= 2 2 4ri Y, (0, 8)j(kR) Vau(n, W)ix(kp)

A LM

X (—D)"[@21 + DEL + 1)@\ + 1)/4x)t
I L A l L A
(O 0 O)(—m M n)

=1 g; Yin (@, q’)jL(kR)SLM,lm(kp) M ‘l’)'

X

(13)

We have here obtained the expression for the
matrix element of the operator for the parallel dis-
placement of the coordinate system along an arb-
itrary direction, which we call Spu,1.(ko, 0, ¥). To
obtain (4) we specialize to 3 = ¢ = 0 which en-
forces ® = ¢ and 4 = 0 and then also M =
This yields:

T (kp) = ;z‘““(—l)“(zx + 1[I+ 1)L + 1

%o 5 o m oo

From (14) we can verify (7) explicitly. Owing to
the properties of the 3-j coeflicients, L + A + [
must be an even number. Thus A can change only
in steps of 2, and A = (L + 1) mod 2. The change
p — —p multiplies the spherical Bessel functions
by (—1)*, and therefore we have

TP (~ke) = (=D TP (kp). @)

We note two more forms for the T's [see discussion
following Eq. (26)]:

T (kp) = (—1) QL + 1)L + m)NL — m)!
X @+ DU+ mit — m)1? Z (—1y 22 (2p)'

(14)

(15)

X [0 + m)lp —~ ML — PII — p)" ’——(,;5@”—)

and

TP (kp) = (=121 + 1)QL + 1]}

@+ mil — m)! - @) )
X {(L Ty m)!} Ty

)']—x &+ p)! ]L—l-l-p(kp).
S U=p!  (key

Xlp+mip—m

(16)
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The general rotation-translation transformation
in which the coordinate system is displaced from
its original position to the final position (see Fig. 1)
is then given in terms of the translation operator
T by

Fkr) Y (8, 0) = Z D2 (e, B, VTS (ko)

X fo(nl’)m(O: 8: SD)JL(kR) YLM(®) Q) M;’ . (17)

We emphasize again that we displace and rotate
the coordinate system and not the “body.”

‘We now show that S .. indeed follows from (17).
This is very simple since the second rotation, i.e.,
the rotation after the shift, is just the inverse of
the first rotation. With

D) = DEW* =
we have

SLM.lm(kp7 7 \l’) =

(=" DL uw), (18)

; (‘I)M-Ml"b(—l;n)’—M(O; 7, d’)
2 (=™

X D0, 1, YT (ko) =

gm0
x (5 L Moo, 9 wr

X g; DI @V + DI+ 1EL + 1

L 1 M\ L 1 WY
><(O 1] 0)(—m' m’ O)J)"(kp)

The summation over m’ gives 2\ + 1) ‘6. Re-
placing the remaining ©* by an appropriate Y one
obtains back S,y ,:, as defined by (13), as is neces-
sary:

SLM.lm(kP: 7, lﬁ)
= }Q =) 4w L + 1@+ 1)@ + 1)}

x (B ENE L ), wide. a9

We would like to emphasize the simplicity of the
dependence of T'7’ and in particular of Syu.im OD
kp, which is the consequence of the symmetry (11)
between p and R. This symmetry is not at all evident
from the considerations leading to (5). There one
sees the symmetry between r and R; they are both
associated with the “wavefunction” while p is asso-
ciated with the ‘“operator.” A lack of symmetry,
as exemplified in the forms (15) and (16), would
thus offband not be unexpected. One can obtain a

(19)
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Fre. 3. Symmetrized translation
transformation.

)
~

form exhibiting the complete symmetry between the
three vectors if one considers the closed triangle of
Fig. 3:

R+e+r=20

and expands

1 = o Rpikrogiker

= 2 2 LA @l + s+ DEL + D)

im A LM

! N LNl N L
X (m p M)(O 0 0)
X jz (kT) th(a; ‘P)jL(kR) YLM(®) ‘I’)jx(kp) Y)\n("h \l’) (20)

Here naturally all three vectors are equivalent and
enter in a fully symmetric way.

In some applications one needs the expansion of
the so-called “solid harmonics,” 7'Y,,.(8, ¢), about
a shifted origin. Traditionally this is done in analogy
to the definition of the Legendre polynomials where
the shift is “down’’ along the z axis. [See Introduction
and Eq. (I).] We can obtain the appropriate formulas
by multiplying both sides of Eq. (4) by ™' and going
to the limit ¥ = 0; evidently [ is the lowest power
of k& on both sides of (4). We now determine the
lowest power of k for both factors of the right-hand
side of (4) separately. It follows immediately from
the 3-j coefficients of (14) that the sum over \ in
(14) has only a finite number of terms and begins
at Amia = ! — L. The phase factor, from (14)and
(7)), is then #="*"L = 41 if [ — L is an even
number and —1 if { — L is odd. Thus we have

& (=kp) = (=172l — 2L + 1)

% [@] + D@L + 1))*(5 I(; { p L)
(ko) "

! L 1-— L)
X (—m m 0
and, using the explicit expression for the first of

the (3-j) symbols and replacing the other by a
Wigner coefficient, we obtain the expression

r Ylm(o) Qo) = Z BLM,zm
LM

@l — 2L + D

X PZ—L Yl—L;m—-M(n) ’l’)RL YLM(®) (I)), (21)

with

L. C. MAXIMON
— f__1)L1 41r(2l+ 1)! 4
Busim = (—1) [(21, F D@ — oL F 1)!]
XL M I—L m—M|lm) 2

IV. TRANSLATION OF INCOMING AND
OUTGOING MULTIPOLE FIELDS

When one looks at Eq. (4) or at the analo-
gous equation for parallel displacement involving
Sia.imlkpo, 7, ¥) it is tempting to split it up into
incoming and outgoing waves:

PEN Y100, 0) + B (kN Y 106, o)
= D RPER)Y (O, D)TY (kp)
L

+ ZL: h(R)Y 1.n(©, ®)TLY (ko). (23)
Since one should think that incoming and outgoing
waves are quite distinet and should not mix it would
seem that it must be possible to “split (23) down
the middle,” i.e., that there should hold separately,
for « = 1 and for a = 2,

hi® (k) Y (8, )

= D hPRR)Y 1O, )TV (kp),  (24)

a=1,2.

This is indeed the case. In the most elementary
way it can be seen by considering the formula
(Z1.y is a general Bessel function)

Bi@T 0, )
= 200+ ) 3+ b i)

X Zisnsy(6R) Y 11(07, )C P (o8 @), (25)

which has been obtained from the Bessel function
addition theorem® by observing that

R/r = sin 6/sin ©’, (26)

where @ = 7 — 0. Equation (25) is nothing but
the expansion (4) for m = [ “in raw form.” It is
valid for Z;,3 = J.; without restrictions, for Z,,; =
H{P only for r, R > p. Otherwise the expansion
is identical for Ji.; and for H{}}’. The expansion
for m < | can be obtained from (25) by means
of the lowering operator L_. As a matter of fact
the forms (15) and (16) for 7' were obtained this
way. This procedure is however rather clumsy. We
now give a more transparent derivation.

33 W. Magnus and F. Oberhettinger, Formulas and
Theorems for the Functions of Mathematical Physics (Chelsea
Publishing Company, New York, 1954), p. 21.
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We start again with (11) but in contrast to (12)
use the expansion of a plane wave into multipoles
L, M only for e*'®, multiply by Y:.(¢, ¢') and
integrate over ¢’ and ¢, the integration path S for
¢ remaining unspecified for the time being:

2
f dy’ f d cos 0Y,,.(0, oe'""
o 8

= 47 ; P Youln, Wi(kp)

2x )
X [ e [ dcos V0, &)V i@, e
] 8
= 4r 5 2 A=D"" T, Wilke)

As LM

[(21, + D@+ D@ + 1)]
4

x(sz)(L zx)
00 0/\M —m u

2%
X de’ f d cos 0 Y, (0, o)’ .
0 8

27)

We recognize the factor multiplying the integral on
the right-hand side to be ' “Syu.1n(kp, 1, ¥). We
now have only to show that by choosing a suitable
integration path S we can obtain the spherical Bessel
functions, i.e.,

2%
do’ f d cos 8 Y., (¢, <,a')eik'r
o 8

= Cs 21(]07') Yz,,,(o, (p). (28)

If we choose the path S to go from cos ¢ = —1
to cos ¢ = +1 then we indeed obtain Cg = 4x¢’
and z,(kr) = j,(kr). It is somewhat more intricate

to show how to obtain the spherical Hankel func-
tions. We begin by proving the special cases

T

d cos 6P,(cos 8)e™* ***? = 'R (kr) (29)

-1

and

+1

f d cos 6P(cos B)e™ " = PR (Rr).  (30)
The specialization here consists in taking r to lie
along the z axis, in which case only m = 0 remains.
We will now show that the left-hand sides obey
the differential equation for spherical Bessel fune-
tions and then determine the kind and normalization
of the spherical Bessel functions by finding the
asymptotic behavior®*:

3 E. T. Whittaker, Proc. London Math. Soc. 35, 198
(1903).
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28 , .. W+ 1)]
I:ar +5 r ar +k r°
b ikrz b 2 276
X fa dzr P,(z)e'*"™ = fa l:—k z + -irﬁ
+ k? l(l + 1)] d P ( )etkrz (31)

Using the identity

|krz

= (1/ikr) de*™*/dx
and integrating by parts we obtain Eq. (31) equal to

b

k ikraz
- @ — 2P, ()

a

23: ikrz i
-+ T PI(IK)E

a

1 d ikrz ’

+ g [ = 2”)Py(z)]e™ .
i 1 ikrz d2

[ e ae{Tat0 - 2p

2 C% [2Pi(x)] + I + 1)P,(x)}- (32)
This expression vanishes at the boundaries z = +1
and £ = 7o ; the expression in the curly brackets
in the integral vanishes identically because it is just
the differential equation for P;(z). We now check
the asymptotic behavior:

ikry

b b
f dx P,(x)e™* = f dz P,(z) j_xi'kr

|kr: b ikr dPl
= Pi@) G . .[dlecrdx
|lcrz b dP ikre b
= P( ) k dlx(x) (eikr)2 + . (33)

Inserting the appropriate integration boundaries in
(33) and inserting the appropriate asymptotic expan-
sion for {*® in (29) and (30) we verify immediately
the correctness of Eqs. (29) and (30).

We now return to (28). In order to conneet this
equation with (29) and (30) we rotate the coordinate
system in (28) so that the new z axis coincides with
the direction of r, and obtain,

f de’ d cos @'Y ,.(0, )™ = E D0, 8, @)

X f dﬁo d cos GIIYlm,(o", (P”)G”" cos 0
= 3 000, 6, )28

X f d cOos 9’ Ylo(e,,’ (,0")6“" cos 0’7

= 2xY:1.(6, ¢) f d cos 6P (cos 8'")e™ """, (28)
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These transformations are perfectly all right if one
integrates over the full surface of a unit sphere,
which then leads directly to j;(kr). It has to be
shown in detail that this procedure is still applicable
with the region of integration indicated in (29) and
(30). We devote Appendix A to the proof of (28').
We then obtain

2r i
[ de¢’ d cos /Y ,.(0, oe™"
v 8 -1

= 2n%' Yia(8, o)hi? (kr) 299

and

2 1
j; dgo’f dcos 'Y ,.(0, e ""

= 2mi' ¥in(6, Qb (kr).  (307)

The expansion (24) is valid only for p < R. Since
we want to be able to use the inverse transformation,
we then want to impose also the equivalent condition
p < r. The way in which this restriction appears
is shown in Appendix B.

For completeness we would like to write down
another form for the expansion of A{® (kr)Y..(6, ¢),
even though it does not conform to the point of view
of this article in that the notion of the translation
operator has to be given up. We introduce r. and r.
to denote the smaller and larger of p and R, respec-
tively, and we call the angles associated with r.
and 7. in an analogous way 8., ¢. and 8., ¢,,
respectively. Then we can write an equation which
is formally valid without restrictions:

(k) Y 106, @)
= > Y=L + D@L+ DEN + D

L Min

(L ! x)(L l x)
X\o 0 o\t —m &
X YLM(e>t <p>)h§,°"(kr>) qu(gm <p<)]';\(k?' <)~ (34)
The formula (I) of the Introduction corresponds
to the limiting case k — 0, analogous to Eq. (21)
discussed in Sec. 1T, applied, however, to (24) instead
of (4). Except for the limitations on the values of p
and R, discussed above, Eq. (24) reduces, in the
limit £ — 0, to Eqgs. (21) and (22) provided that
in (21) one replaces ' by """ and R* by R™*7".
With these replacements Eq. (21) then describes
the expansion of static multipole fields about a
“down”’-shifted origin.

L. C. MAXIMON

V. TRANSLATION OF TENSOR MULTIPOLE FIELDS

The tensor wave fields are defined by
3k Y 15300, @)
= 3 WSS’ | MY 16, 9875, (kr)

= [Y'® %813 (), (35)

where we follow the notation of Fano and Racah,’
and where the angles of the unit vector # are 8, ¢.
The quantities é!¥' are unit tensors which, in the
nomenclature of Ref. 6, transform under rotations
in “contra-standard’ fashion. For example, for S=1,
the quantities Y!}, are the usual vector spherical
harmeonics, and the unit tensors are, in terms of the
Cartesian unit vectors %, §, 2,

211}

€y = (_i - ?'?)/\/é
W=
8U1 = & — i5)/VA. (36)

The phase convention of (36) is that of Condon
and Shortley,*® which is the one commonly used
in the definition of the functions ¥,,.(4, ¢).

The translation formulas are obtained immediately
by observing that the unit tensors do not change
under translation.

Since (35) involves eoupling of angular momenta,
the use of the displacement operator S is more
convenient for the derivation than the use of 7.
We rewrite Eq. (13) as

Y = % a3 Y Diaioan)

X [@U + D@ + DEY™(p) x Y (R
= }\Zl; k) RR)X™(B) x Y B b (37

We now couple &% to both sides of (37) to give a
total angular momentum J:

AR [Y () x 8" = g: ike)je (kR)

X {{Y{M(ﬁ) xY{!‘i(R)}[l} Xé[m];}”t)‘p;;
= 20 2 hlen)jn (bR)

X [Y[M(ﬁ) % [Y[l’I(R) xéISl](J'l]t‘{l
X N, S AL 8t
= 2 j(kR)Y/5(©, )

IAPAS A
X 5§§}’M',ZJM(kP’ 7, ‘p)s (38)

% B, U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1951).
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where

Siﬁ}'u'.x.ru(kp, 7, '/’) = )‘Z (47")*751'_1_)‘(“1)““.”_”
yn

% (>\ v z)(x JJ ){x J’ J}

0 0 O/\p M —-M/\S8 1 VU
X ])‘(kp) YM('”: Kb)- (39)
Equations (38) and (39) are the generalizations of

Eqs. (13) and (19’) to tensor multipole fields, and
Eq. (39) reduces to Eq. (19’) for § = 0, viz.,

Sl(?)l'M’.llM(kPJ 7, 10) = SZ’M’,IM(ku LB Kb)

Finally, we obtain the generalization of T’ to the
case of tensor multipole fields by putting = ¢ = 0
in (39), which yields

= VZJ; kR Y53, @ 717571 (ke)  (40)

with

;SJM;J(]CP)

)‘Z it'—t—x(_ 1)S+J+J’—M
X N+ D[R+ D@ + D)@ +D)Er + )i

14 ’ ’
(5 5 o6 % M T Thes @
Again, 7707Y), ,(kp) = T177 (kp).

With the limitations on the values of R and p
discussed in Sec. IV, Eq. (41) is valid also for in-
coming and outgoing waves, i.e., for the case in
which j,(kr) and j;-(kB) in Eq. (40) are replaced
by h{® (kr) and h{*’(kR), respectively; @ = 1, 2.

For completeness, we give the expressions for the
expansion of a tensorial multipole field in terms of
two other tensorial multipole fields, i.e.,
NS0, 9) = 2 Gi(kR)

LWJIiMilaJa Mg

X Yz[;’E,]M,(@u ®,)j1,(kR>) Y§f§1M=(®2x ®,)

X A S0 (WM JT M, | M), 42)
where the vect,ors fulfill the relation:
r = Rl - R2 (43)
and
S = SIK+IS2 (44)
LS1 . [418a]  alsa1yLs.
w = [& Tac

with given S, 8,, and 8;. To derive (42) we again
begin with (37). In order to take into account the
geometry (43) which differs from (10) by the direc-
tion of R,, we write:

775
30 i) = 2 ju.(kB:)jo, (kB2)
X [YHI@®R) xY B a0, 45)
where
zl;l,:L = (“")l’tm,;z,- (46)

We now couple the tensorial part, (44), to both
sides of (45) to obtain:

GEAY™ @) &1 = 3 i (kR)j. (KR)

X [W[ll](Rl) XY“’](Rz)][“

X[é[s'] xéls,l [S]]‘[,}”i; i

= > ji(kR)G R [[Y (R,) x &%)+
[YII.I(R) x A[S.I][J,l]yl

X ((llSl)']l» (l2S2)J2 [ (l1l2)lr (Slsz)s)(J)zl.lg:l-

Thus, the expansion coefficients of (42) are:

(47)

A(B: 823 8) Ii=Ig+1

I:7sbadastd = 0

X [4r@L 4+ DL+ DI+ 1DQRJ, + DT, + D]}

L, L 1
<5 ol s
y Jo

APPENDIX A

(48)

The theorem by Weyl** which contains the proof
of (32) is more general than needed here. We are
going to prove a simplified version of it which is
sufficient for our purposes.

The transformation (29’) consists of two distinct
steps. The first step consists in changing the coor-
dinate system (9, ¢) into a rotated coordinate system
(Euler angles e, 8, 0) in which the polar axis points
into the direction r, i.e., (@, 8) are the polar coor-
dinates of r in the (6, ¢) system (we have changed
the notation here for convenience). We thus write

2x
f de f d 08 6Y10(6, )™ = 3 D0, 8, )
1] S

X fL ay fs d cos ¥ 1 (n, PV (AT)

This step is valid generally since it merely expresses
a transformation into a rotated system of coor-
dinates. As long as « and 8 are real the functions ©
are regular and one may safely embark on an an-
alytical continuation of the angles ¢, 16, ¢, 5 into
the complex domain. The new regions of mtegratlon
L’ and § are given by expressing the old region
of integration in terms of the new variables. A
The essential second step consists in changing the
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Fic. 4. Definition of the relevant
angles.

region of integration back to the original region,
i.e., in replacing the paths L’ and 8’ by L (in which
the variable goes from 0 to 27) and S.

For simplicity (evidently without loss of gen-
erality) we put @ = 0. There then hold (see Fig. 4)

cos § = cos 3 cos 4 — sin 8 sin 7 cos ¥ (A2)

sin # cos ¢ = sin B cos n + cos Bsin g cos ¢ (A3)
sin #sin ¢ = sin gsin ¢ (A4)

cos n = cos B8 cos 6 + sin Bsin 6 cos ¢ (A5)

sin  cos Y = —sin B cos § -+ cos B sin 6 cos¢. (A6)

We take S to be the path shown in Fig. 5. Then
the total region of integration in 6 and ¢ can be
depicted as in Tig. 6, where we have supplemented
the cos @ plane by a third axis which is used to
show the variable ¢. The real region 0 < ¢ < 2w,
0 < cos # < 1, will map into a real region in 7, ¥,
which is shown in Fig. 7 where the grid § = const
and ¢ = const is also indicated. The singular curve
6 = B is indicated by a heavy line. The rest of the
region of integration, i.e., where cos § varies between
0 and 7=, can not be shown as simply since there ¢
is complex. We thus have to use two complex planes
there. In Fig. 8 and Fig. 9 we have shown the varia-
tions of ¢ and cos 7 if we keep 6 fixed at some value
8 = %r — v, so that cos § = u, and vary ¢ between
0 and 2, as obtained in a straightforward manner
from (A2)-(A6). {The characteristics of the curve
of Fig. 8 can be most easily obtained from the
parametric representation

tan (2 Re ¢) = 2sin ¢ cos ¢ cos

X [cos® 8 + sin® B tanh® » + sin® ¢(1 + cos’ B)]™

i®

cos 8 F1a. 5. Path of integration in

the cos ¢ plane.

L. C. MAXIMON

Re cos @

]

Ui

Fra. 6. o—cos 6 integration region.

tanh (2 Im ¢) = 2sin ¢ tanh »sin 8
X [cos® 8 + sin® g tank’ » + sin® (1 — cos® B)T";
artanh = inverse hyperbolic tangent.}

We recall first that asymptotically 4 has to keep
out of the crosshatched regions in Fig. 10 in order
that (A1) converge at the limit 7. One sees from
(A5) that cos 5 changes linearly between cos n =
cos (6 + B) and cos n = cos (8 — B) if cos ¢ changes
between -+1 and —1. Choosing the branch of the
arccos function indicated in Fig. 10 so that 4 — 6
and ¢ — ¢ for 8 — 0, we see that this implies that
B8 < /2. We require this to be true. Then in the
mapping of Fig. 6 the singular curve 6 = 8 will have
the qualitative features as shown and the mapping
covers in a one-to-one fashion a continuous region
in the real y—y plane. We now want to change the
paths of integration in the variables ¢ and 5. First
we want to let ¥ become real, and then we want
to change, for any fixed ¢, the path in the cos 5

sy ar

cos(F-g)

cos

cos(Frp

F1ae. 7. Projection of the real integration region of Fig. 6
onto the y—cos 3 plane.
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Ar tanh (sin B8 tanhy )

F1a. 8. Variation of ¢ as function of ¢ for a fixed cos 6 = iu.

integration to the path of Fig. 5. In order to be
able to do this two conditions must be satisfied:
(a) the integration endpoints must remain fixed,
and (b) one must not sweep over any singularities
while changing the path of integration. We first
consider the requirement (a).

In the ¢ integration the endpoints do not pose any
problem: we have ¢ = ¢ for ¢ = nm, n being integer.
In the cos » integration one can perform the usual
rearrangement of the integrations in the real region
of integration, for 0 < ¢ < 27,0 < 0 < 7/2, ie,
we can integrate so that the endpoint lies at cos n=1.
The other endpoint of the cos % integration can be
fixed at cos n = 7 since it lies within the convergent
uncrosshatched region of Fig. 10. We have thus
succeeded in rewriting the integrations so that the
endpoints in the variables » and ¢ are now the
same as those in the variables ¢ and ¢, i.e., require-
ment (a) is fulfilled.

In order to determine whether we can shift the
paths of integration we have to find the location
of the singularities of the integrand of the right-hand
side of (Al). The singularities are: branchpoints at
cos 9= =1, and an essential singularity at |cos 5| = o.
The last singularity has been taken care of by re-
quiring that the integration path lie within the non-
crosshatched region of Fig. 10. Further, we see (Fig.
9) that the condition 8 < #/2 also insures that the
integration paths always stay away from the branch-
points cos n = =1, except at the endpoint of the
integration which lies in the real integration region
and where we have already specified on which branch

cos n-plone

=/ +u2sinBtipcos 8

VitpZsinB +iucos 8

F16. 9. Variation of cos » as function of ¢ for a fixed cos 8 = iu.
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/11

- plane

F-p-iv

7 W

Fia. 10, Variation of 4 as function of ¢ for a fixed cos’8_= i,
0 =x/2 —in

of the function we should stay. To be totally precise,
one has to consider the limit p — 0 of an integration
with the endpoint cos n = 1 replaced by cos 4 =
1 — p (dotted line in Fig. 7). This would mean that
in the region of integration in Fig. 6 the two little
halfeircles with radius r = p cos S at ¢ = 0 and 27
and at cos 8 = cos 8 (dotted halfcircles in Fig. 6)
would have to be left out before going to the limit
p = 0. One sees that this does not lead to any
complications and coincides with the usual procedure
one has to follow when one integrates over the whole
surface of the real unit sphere in terms of a rotated
system of coordinates. We thus see that condition (b)
also is fulfilled in our case and that the essential
second step is fully justified. We can therefore write

[ v [ deosa¥intn, pet
L’ 8
2 1 .
= [ ay [ dcosa¥imln, 9o
0o i

1
= 2rbwo [ dcosn¥iln, P, (AT)

which we can then insert in (A1) to obtain finally
2% 1

f dgof d cos 8Y,,.(8, p)e'*"*
o i

1
= 27Y,..(8, @) f d cos 9P, (cos n)e’*"°°*"

= 210" Y,.(8, )bV (kr). (A8)

A completely analogous proof holds for the com-
plementary path leading to A{®. In (A8) we have
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dropped the assumption « = 0, which obviously
does not influence the proof.

APPENDIX B
In the expansion
RO (k) Y 1 (8, @)
= 2 "R Y 1n(©, AT (ko)

a=1,2

one has to impose certain restrictions on r, R, and p.
These restrictions come about in the following
manner.,

In Appendix A it was shown that the integrals
(29" and (30) are defined as long as the angle
between the polar axis and the direction of r is less
than #/2. We now consider (27), i.e.,

fdgo d cos 0'Y,.(0/, ¢)e'™"" fd;o’ d cos ¢’
X LZM T Y pu(, @)Seacim(kn, m, e (B2)

One will be most economical in rotations if one
rotates the coordinate system so that the new polar
axis coincides with the direction of either r or R
before deciding on the integration region. Then one
will have to perform the transformation discussed
in Appendix A only for an angle 8 equal to the

(B1)

(zLx

m —m @

(=D 4 M~ UL + ML — m)AN

L. C. MAXIMON

angle between the directions of R and r. The expan-
sion thus obtained will be valid as long as one can
interchange the order of summation and integration
in (B2). This is allowed if the resulting series con-
verges uniformly.

The first restriction is thus the requirement that
the angle between the directions of R and r be less
than x/2. However, the requirement of the con-
vergence of (B1) yields a more stringent restriction.
We thus investigate the magnitude of the terms for
large L, ie., L > .

A term of the series (B1) written out is:

= hi (kR)Y1n(®, 9 T7 (kp)
= Zhi“’(kR) Yia®, 97" (=D"
A

X @\ + D[EL + DEl+ DI
(UL 2 Do = par o

Because of the triangular conditions, for a given I
the sum over A in (B3) will, for arbitrarily large L,
have only ! terms. We thus have

|4zl < V(AL masl- (B4)

We now turn to the individual factors in A",
The behavior of the 3-j symbols follows from their
explicit form:

) =[A+L-=NE+N=DN+1-DPE+L+xr+Dy?

X LT L

This sum is again limited to a small number of

terms, namely, at most to ! terms. Equation (B5)

can be estimated by approximating the factorials

which have an argument of order L by Sirling’s

formula. In this way one obtains in a straightforward
e(l, m)

manner
O [1 + 0(%)]

1 L
l(m —_m O)l
for L>1,1=0Q), (B6)

where ¢(l, m) = O(1), which is to be expected from
the relation of the 3-j symbols to the Wigner co-
efficients, the latter being orthonormal.

The spherical harmonics remain bounded:

[Y2a(6, @] = O[1 + 0Q1/L)]
for L>1,m = 0(), B7)

a result also to be expected since the ¥’s are normal-

A=l -m—-PB~L+m+ P —m—pA—I+m+pl

(B5)

ized. Finally, we have

W) = (—)x f,@—fi—j;;)- [1 + 0(%)} for A2,
(B8)

@) = é(ﬁ)_L l . _r =D [1 + 0(%)]
for L> 2. (B9)

According to (B4) we have to take the largest
possible term. This leads to X = L — [, Inserting
(B6), (B7), and (B8) in (B3) we obtain

4. = Ol(o/R)" L'

which for g/R < 1 decreases faster than any power
of L, for p/R > 1 goes to infinity. Therefore the
series (B1) converges for p/R < 1.

The equivalent series for j; instead of 4; converges
for all values of p/R.
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In a previous paper, a system of nonlinear differential equations and boundary conditions governing
the macroscopic behavior of arbitrarily anisotropic nonecondueting magnetically saturated media
undergoing large deformations, was derived. The derivation utilized the classical procedure of de-
fining field vectors and determining the equations relating them by applying energy and momentum
conservation theorems. The macroscopic effect of the quantum mechanical exchange interaction
was included as was dissipation and the associated thermodynamics. The magnetic field was as-
sumed to be quasistationary. In this paper a variational principle is presented, which is shown to
yield the aforementioned system of equations and boundary conditions in the absence of dissipation

and heat flow.

I. INTRODUCTION

N s previous paper' (hereafter referred to as I),
the differential equations and boundary condi-
tions governing the macroscopic behavior of ar-
bitrarily anisotropic nonconducting magnetically
saturated media undergoing large deformations were
derived by means of a systematic and consistent
application of the laws of continuum physics to a
model consisting of an electronic spin continuum
coupled to a lattice continuum. The macroscopic
effect of the quantum-mechanical exchange inter-
action was included as was dissipation and the asso-
ciated thermodynamies. As usual in such derivations,
certain basic interacting field vectors were defined
and the equations relating them were determined
by means of an application of the well-known mo-
mentum and energy conservation theorems and
irreversible thermodynamic principles. The precise
definitions of all the variables with detailed discus-
sion pertaining to them and the equations relating
them are, of course, contained in I; and consequently
are not presented here. Nevertheless, this paper is
reasonably self-contained.

Now, it is commonly agreed that it is both inter-
esting and useful to have a variational principle
which reproduces an entire system of equations
which were obtained previously in the alternative
manner of defining field variables and applying con-~
servation theorems. It is interesting from the stand-
point of having a single statement embodying the
entire theory in a manner which exhibits energies
of interaction; and useful for the purpose of obtaining
approximate solutions of the equations or generaliz-
ing the theory.

In this paper a variational principal is presented
which yields the system of equations—minus dissipa-

L H. ¥. Tiersten, J. Math. Phys, 5, 1298 (1964).

tion and heat flow—previously derived in I in the
aforementioned straightforward manner. Both the
differential equations and the boundary conditions
at material surfaces of discontinuity are obtained
from this variational formulation.

2. PRELIMINARY CONSIDERATIONS

In order that this paper be somewhat self-con-
tained we must—before proceeding with the varia-
tional principle—briefly repeat certain definitions
and conditions employed in I. The symbolism we
use is identical with that of I. Let z; denote the
Cartesian components of a material particle at some
reference time £, and y; the components of the same
particle at some arbitrary time ¢ As in I, the z;
are referred to as material coordinates, and the y;
as spatial coordinates. The deformation (or motion)
of the body is described by the mapping®

Yi = Yz, 0), @.1)

which is one-to-one and differentiable as often as
required except possibly at some singular points,
curves, and surfaces. Let p, be the mass density
in the reference configuration, dV an element of
deformed volume, and dV, the corresponding
element of undeformed volume. Then the conserva-
tion of mass takes the form

pdV = podV,, 22

for any differential element of matter. This will be
an important constraint in the variation. In view
of the well-known geometric relation

JdVo = dV, (2_3)

2 For a clear discussion of deformation th A
Secs. 13, 15, and 16, fon theory see Ref. 3,

# C. Truesdell and R. A. Toupin, “The Classical Field
Theories” in Hncyclopedia of Physics, edited by 8. Fliigge
(Springer-Verlag, Berlin, 1960), Vol. III/I,
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where J is the Jacobian of the transformation (2.1),
and

the conservation of mass may be written in the form
pd = po. (2.5)

At each material point y, the continuum possesses
a magnetic moment per unit mass u;, which is
related to the ordinary magnetization vector M, by
the relation

(2.6)

Since the material is magnetically saturated and the
mass is conserved, the magnitude of the magnetic
moment per unit mass is conserved, which gives us
the important relation

M; = pu;.

(2.7)

where ug is constant in a homogeneous material.
Taking the material gradient of (2.7), we obtain

wrdu/0xz,, = 0. 2.8)

Equations (2.7) and (2.8) will be important con-
straints in the variation. As a result of the existence
of electron spin, we have associated with the mag-
netization vector M at each material point a volume
density of angular momentum J, given by

MKl = #g,

J=1"py, (2.9)

where v is the gyromagnetic ratio and is constant
for a particular material. Also, at each point of
space y;, we have the magnetic scalar potential ¢,
from which the Maxwell magnetic field vector H™
may be determined from the relation

HY = —d¢/dy;.

Thus, it is clear that electromagnetic propagation
is excluded and here, as in I, the magnetic field is
quasistationary. Naturally, u and H™ are axial
vectors and ¢ is an axial scalar. It should be noted
that the magnetic scalar potential ¢ exists at all
points of space, even those not occupied by matter;

(2.10)

[J.
()
Fig. 1. Incremental motion of
magnetization vector.
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whereas u exists only at those points of space
occupied by matter. The mapping (2.1), however,
is defined only for those points occupied by matter
since the material particle is preserved in the map-
ping. In the points of space not occupied by matter
there are no material particles, and for those points
the mapping becomes meaningless, and with the
exception of boundary points, the y, take the place
of the z; in matter and remain fixed in an actual
motion but they may be subject to a variation in
a virtual motion.

The velocity v; of a material particle is given by

v; = dy;/dt = dy;(zs, 1)/, (2.11)

where d/dt denotes the material time derivative.
Similarly, the time rate of change of magnetic
moment per unit mass is given by

dp;/dt = pi(xs, t)/0L.

Now it should be observed that whereas any value
of v is kinematically possible, only those values of
du/dt are possible which are consistent with (2.7),
i.e., which satisfy the relation

Consideration of this fact reveals that w may be
instantaneously translating with velocity v and ro-
tating with angular velocity w. The angle wA¢,
through which u turns in time At is shown in Fig. 1.
From Fig. 1 it is clear that

(2.12)

WAL = ug’u x Ay. (2.14)

Now, the angular velocity w is a so-called ‘“kinemat-
ical (or nonholonomic) vector,” i.e., a vector which
is not the time derivative of an actual vector func-
tion. Under these circumstances, [A0] = WA{ exists,
but is merely an infinitesimal vectorial change in
angle and not the differential of a vector function
(see Ref. 4). It is well known that the negative of
the time rate of change of the spin angular momen-
tum v 'pudV may be regarded as a d’Alembertian
inertial couple. The rate at which work is done by
this couple in an actual motion vanishes by virtue
of the relation

d (1pvdv)-w=—%pdvfl—9 du _
YHs

E} Y dt-y th = (215)

In other words, as the spin angular momentum
changes in time, the energy associated with it does
not. As a consequence of the previous considerations,

4 C. Lanczos, The Variational Principles of Mechanics,
éUnigersxty of Toronto Press, Toronto, 1949), Chap. IV,
ec. 2.
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the virtual work done by the inertial couple of the
time rate of change of spin angular momentum will
be computed directly in the variational principle
and not determined as a variation of an energy
function.

In the variational principle it will be important
to remember that the variables z; and f are held
fixed in the variations considered for points in the
material body, and the actual point and ¢ are held
fixed for points in free space where z; has no meaning,
However, it must be remembered that those points
of free space which abut the boundary of a material
region, are subject to the same variation of position
as the material points of the boundary, i.e., the 8y,.
That is why the positions of the points of free space
must be subject to a variation. As usual, the varia-
tions are virtual (as opposed to actual) changes in
the variables which are consistent with the con-
straints. In the present case there are three con-
straint conditions for points in the material body,
which are given by (2.2), (2.7), and (2.8), respec-
tively. To assure that these constraints are not
violated, the variations must be such that

8(pdV) = 0, (2.16a)
by = 0, (2.16b)
#:8(3ps/02,) + (Opa/ 0%,) 6z = 0. (2.16¢)

In a variation du, w turns through an angle [36],
which is given by

[36] = u5”u x bu, (2.17)

as shown in Fig. 1. Naturally, the vector quantity
[60] is an infinitesimal nonholonomic vector, and not
the variation of an actual vector function, just as
is wAZ. Although the work done by the d’Alembertian
inertial couple —d(y 'pudV)/dt in an actual motion
vanishes, in a virtual motion it need not. The virtual
work éW done by the inertial couple in an arbitrary
variation [86] is given by

W = —v'[d(pw dV)/dt]-[56]
= —y 'us’p AV (du/dt)-uxdp.  (2.18)
From (2.17), with the help of (2.16b), we obtain

Su = —ux[56], (2.19a)
or, in Cartesian tensor notation
6#1 = '—ezm,-pm[ﬁﬁ].-. (z.lgb)

In Secs. 5 and 6 of I, it is shown that there exists
at each material point a free energy density F which,
in this nondissipative case, corresponds to an internal
energy per unit mass U, of the form
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U= U(ay1/axma My aﬂi/axm)- (220)

In addition, at each material point there exists a
kinetic energy per unit mass 7' given by

(2.21)

T = %vkvk.
3. THE VARIATIONAL PRINCIPLE

Before formulating the variational principle we
define the Lagrangian function

o= l_aiég>

81r ayk ayk

1 dp dp

+ 8r j(; AYx Oy av,
where U = E,. V. stands for the sum of all material
regions and & for free space. All variables appearing
in (3.1) have already been defined in Sec. 2. The
first term on the rhs of (3.1) represents the mech-
anical kinetic energy of the material body and the
second term the internal (stored) energy of deforma-
tion, magnetization, and exchange. This latter term
is quite analogous to the energy stored in a purely
elastic solid. The spin kinetic energy is not contained
in (3.1), since the variation of it vanishes by virtue
of (2.7). The third term represents the interaction
energy of the dipole moment with the magnetic
field, the fourth term the magnetic field energy in
the material regions, and the last term the magnetic
field energy in free space. The variational prineiple
may be written in the form

t t ¢
af ,edt+f f aWdt+f f[)\ukép,,
to to k¢ to Qv

+ L,"(uka(a“k> 4 9k auk)] dVdi =0, (3.2)

0% 0z,

fv(p(T— v) - $e

3.1

where X and L,, are four Lagrangian undetermined
multipliers which have been introduced to assure
that the variations are consistent with the con-
straint conditions (2.16b, ¢) and §W is the virtual
work done by the inertial couple of the time rate
of change of the spin angular momentum, and is
given by (2.18). {The third integral in (3.2) could
equally readily have been combined with the first
by defining an

& =e+ A A (ueme — ps) + Lo, 0p/0x,] dV.

However, the procedure adopted seems more direct
and preferable.} In (3.2) the variables subject to in-
dependent variations are y,, u;, and ¢ for material
points and y; and ¢ for points in free space. The
variations du; and 8(du./dz,) in (3.2) may be treated
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as if they are independent even though they are
constrained by (2.16b, ¢) by virtue of the fact that
the four conditions (2.16b, ¢) along with the proper
number of undetermined multipliers have been in-
troduced into (3.2) in the manner shown. As usual,
the variations vanish at the endpoints of the interval,
ie., at ¢, and .

In order to demonstrate that (3.2) does indeed
yield the system of equations derived in /—minus
dissipation and heat flow and containing material
surfaces of discontinuity only—we shall need certain
very useful relations which we now briefly introduce.
First from (2.1) and the fact that it is one-to-one
and continuously differentiable, we have

Ym 9
0x; OYm

8 _ 9w O 9 _
y;  Oy; 9r. ' O,

Since ay,/ay, = 5.-,- and Bxi/t')xi = 6,’,', where 04
is the Kronecker delta, we have from (3.3)

(3.3a, b)

9Y: 0y,
0z, 3Y;

From the theory of 3 X 3 determinants (see Ref. 5)

0%; OYn

3y, oz, (3.4a, b)

= 6,',', = 6“'.

0y 9Y; e _ J

“* oz, or,, Or, by
where e,;; is the alternating tensor. From (3.5), with
the aid of the well-known identity eima€ims = 6,
we find

(3.5)

1 9Ys 9Y;i OYs

J = 6 Giiremn 50 Bz, Oz, (3.6)

Operating on (3.5) with e,,,,, using the well-known
tensor identity €;mm€rms = 28, and (3.4b), we obtain

1 By; Oy
2 eiikermn axm ax"

oz,

=J F 3.7
We will also need the relations between the basic
variations 8y, Su;, and dp and the variations of
the other variables appearing in (3.2). Some imme-
diate relations of this nature, arising from the fact
that the é-process commutes with partial differentia-
tion with respect to variables held fixed in the
variation, are

(&)~ n1) - 2140, o
8(dy./0x,) = 3(8Y.)/0Zm, (3.8b)
8(0u:/0x,) = 9(du.)/0xm, (3.8¢)
8(d¢/02,) = 0(8¢)/0%n. (3.8d)

8 A. J. McConnell, Applications of Tensor Analysis (Dover
Publications, Inc., New York, 1957), Sec. 6.
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From (3.4b), with the aid of (3.4a) and (3.8b),
we obtain

ox
o) -
MY».

Application of the § process to (3.6) yields

_1 s 0y; <6i)
6'] - 2eiikelmn axl axm 6 axn ’

from which, with (3.7) and (3.8b), we obtain
8J = J(3x,/8ys) 3(6yr)/0xn.

ax,,, oz,

Ay Ay, ax (3.9

(8y.).

(3.10)

(3.11)
Since
9p _ 9%n dp_

6yk - ayk axm !

application of the & process to d¢/dy, yields

Qf_) _ 9n (a_«>> S <3L)
5(6% Y s 0%, + 0Z,, s )’
from which, with (3.3a), (3.8b), (3.8d), and (3.9),
we obtain

(3.12)

5(@-) _ (%) _ 3¢ 0(3y)).

O oY Y, Y

Although (3.13) has been derived for points in
material regions, it is valid for points in free space
also, since a virtual displacement of the position
of these points is possible—even though an actual
displacement is meaningless—by means of defining
a virtual mapping analogous to (2.1), but not asso-
ciated with a material particle.

We are now in a position to take the variation
called for in the first term of (3.2). First, from (2.21)
with (2.11), (2.16a), (3.8a) and an integration with
respect to time, we obtain

‘[l dydy _f [gly_ ]
6/t°dt‘/;2pdt v = [ oav|Pa, |

t dzyi
_AML”W

from which, since dy; vanishes at £, and ¢, we find
1 dy;dy,
s f 4 J,2°d a av
d yi
ar dy; dV.

2
to Y

Now, from (2.20), with (2.16a), and (3.8b, ¢), we
note that

f _ aU  a(dy)
g f, at fo pUav = f d f.o "(a(ay,/axm) Er

aU  a(sw) , U )
o(@u: /05 oz T o, i) AV

(3.13)

AV,

(3.14)

+ (3.15)
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The first volume integral on the rhs of (3.15) yields

1) a(dy,)
f é)(ay i/0Zy) OLn av

_ 9y, 8(8y,)
.[ 6(8y /me) 0z, 0y, av

=fi( dy: _ dU
vay.'p

61‘,,. a(ay,/axm)

9y 98U )ay,. av.
Employing the divergence theorem, we obtain

axm a(ayi/axm)

AU  3(dy,)
a(ay,/ax,,.) 0%, av

ayl
f P S a(ay /a o i dV

+ f 8y,  8U

TP o 0T, a(ay,/ax,,,)
- f j’_(
v Y P

dy. U )

3%, 3@y, amn) 1 4V
where 7, denotes the Cartesian components of the
outwardly directed unit normal across a surface of
discontinuity, 8 the sum of those surfaces of dis-
continuity which separate two distinet material
regions, and ® the sum of those surfaces of dis-
continuity which separate material regions from free
space. The sum 8, of course, counts all such surfaces
twice, once from each side. If we agree to denote
one side of a material surface of discontinuity by
a plus and the other by a minus and count the
surface only once, we may write

au

6(6y,/6x,,.) 6:6,,. oz, (%) aV

_ 9y au ]
B fs " [ 0T 6(811,/690».) a3
198

+ [ o g 300y, aay i 98

9 9y __ aU )
[ 6y.~( by; AV, (3.16)

9z, 9(dy;/0x.n)
where n” denotes the Cartesian components of the
unit normal to the surface of discontinuity directed
from the -+ region to the — region, and we have
introduced the conventional notation [C;] for
C% — (5. By means of the same procedure, the
second volume integral on the rhs of (3.15) gives us
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oU () AV

P 3(op;/0x.) 6x,,.
9y au
azm a(aﬂl/axm)

= ‘/;+ [
dy: U _
+ fm”"” 02, 9(9p;/02.)

_ [ éy__ﬂ_)
L 9y (” 35 8Os/ 0zm)) P av. (3.17)

The variation of the third term in (3.1), with the
aid of (2.6), (2.16a), and (3.13), yields

]

6[1-,' dS

6¢ 3(5?/1)
Y

k

(o206 _

oY + )p av

s ay

5}
= f ayk (Mk6§0 Mk £ 6:1/[) dV

" f ( aMk oM, d¢
v ayk Y Oy
+ M,

sy + ay pauk) av,

oo + ——

Y.

6y ay

from which, with the aid of the divergence theorem
and the introduction of the notation agreements
surrounding Eq. (3.16), we obtain

f 3¢ arodv = fs n}[Mkaga - M, (—%‘i ay,] s

)as

_ . e
+ ‘/:B nk(Mk5(0 M, X Y,

aM,, 4+ Oy 9o
+f ( b + My Ay, %
30 (3.18)
+ M, 6_1/ ay &Y + P5 )dV-

For the variation of the fourth term in (3.1) with
the aid of (2.3), (3.3a), (3.11), (3.13), the divergence
theorem and the aforementioned notation conven-
tions, we obtain

130 3

v 87 Ay, Ay
=81_7r "k[zay,, 25’—;‘(;9; ,+a";a;’ ,,]ds
+;—Tfnk(2§ia¢—2§—;§y‘% ,+§£:—Zayk)d8
" slTrfv (—2 6y(:2§yk S + 2 55%% sy,) av.

(3.19)
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Similarly, the variation of the free space magnetic
field energy yields

1 9 8¢

877' Gyk 6yk

1 ( do dp B¢ O¢ dp )

87'_ m 2 5 —2— ayk Oy 5 + ay ay 5 dS

1 ( e e B )

— S —= Sy, 1 dV,
+ 8r ® ayk ayk + 8yk ayk 6y1 Yyt

(3.20)

in which 8y, in the surface integral is the 8y, of the
boundary of the adjacent material region, 8y, in the
volume integral is arbitrary, and the variations &y,
and d¢ in the surface integral over the boundary
at infinity have already been assumed to vanish.

fdtf[ pdt azi("

e 0U ) _
oz, 9(dy;/ 0.,

* 9y, dy;
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By means of a procedure similar to the one employed
in going from the first term on the rhs of (3.15)
to (3.16), we obtain

f Lmuw(%)p dv = n?[% me.“kaﬂk] ds
v

oz, g+ 0%,

Y.
+ j{;ni 5.’1%, meﬂk5ﬂk ds

o (ay,
B »/:0 [By, (aj,,, me’)“k + Lnp 5~ ]éuk av. (3.21)

Substituting first from (3.16) and (3.17) into
(3.15), then from (2.18), (3.14), (3.15), and (3.18)—
(3.21) into (3.2) while introducing the rhs of (2.19)
for 6y wherever it occurs and recombining terms,
we obtain

Fo . de (i e _

aMk)]
6y,~ 4 ayk 6y;; 6y’ av

Y

= [ [ Lo o (ot s fg) = comlo 3t = o+ 03] 1 o Jooav
+ f,t dt fv (aazik - 4_1;63/(:\ gy)‘s“’dv - _f déf EA ayk (5” - 82’1)

SRR (e B e 2 il e L B

‘f a [ m [ T o et [éqfagf “%é%«%éqfa"ﬂay" a8

+ f di L nﬁ[emuk@%g@f%a — L,p %u;)[ﬁﬁlz] as

t f di fm” 8’““"( ;g,: a(a,f%xm) = Lup ay )[56}‘ a8

- [ [oni{ = S de] = [l [ilone - 53

&a:l) dS = 0,

1 8 {dy:;
Py — =2 (2 .

where A A 2 3. \ox., Lonp (3.22)
and we have taken the unit normal n* on the bound- _ 8y, 8U (3.239)
ary & between the material regions and free space TP o, 3(0y: 0w =of
to be pointing out of the material region. Then, 3 o

for consistency with the system of notation pre- Ay —a—y—i W’ (3.23b)
viously introduced for the surfaces 87, the free space Tm O\OH;f OLm

side of ® is denoted by -~ and the material side by 4. HY = — » (3.230)

Since we have introduced the proper number of
undetermined multipliers in the usual Lagrangian
manner, we may treat all variations appearing in
(3.22) as if they are independent, even though the
three components [86]; are not. Consequently, if we
make the identifications

Ops

substitute from (2.10) and introduce the relation
B, = H, + 4wM,, we obtain the system of equations

aHM d &y,

87,,
+ Y Parg

(3.24a)
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evim(—(pA:)/dy; + pHS + pHY) = v7'p du,/dt,

(3.24b)
dB./dy. = 0, (3.24¢)

at each material point, and
oH /oy, = 0, (3.25)

at each point of free space; and the discontinuity
conditions®

+ 1 1
'ﬂ.-[(Tu + EBfH?II - gH,I:'IHkMﬁﬁ)By,-] =0,

n-:'[ekil#kpAii[ég]l] =0,

(3.26)

across discontinuity surfaces separating material
regions, and

nﬁ'(‘l'fi + M,-H?’“)

+ T [HYHY — 3HYH'6:,]1 = 0, (3.27a)
ntekil:ukpAii =0, (3-27b)
M, + = 'nS[H'] = 0, (3.27¢)

across the discontinuity surface ® separating ma-
terial regions from free space. In obtaining (3.27¢)
from (3.22) we have assumed that the magnetic
scalar potential ¢ is continuous across ®. If we
further assume that across discontinuity surfaces
separating material regions, adjacent regions are
attached, the magnetic scalar potential is continuous
and the variation in magnetization direction, given
by the nonholonomic vector [56] is continuous, the
variations in (3.26) can be factored out of the dis-
continuity brackets, and we obtain the boundary
conditions

n:[r,-,- + %""H(BiH}VI - %HII:/IHkMan)] =0,
n:[ek:ileAii] =0, nt'[Bi] =0,
[v.]1 =0, [us’einn; du/dt] =0, [el =0,

across material surfaces of discontinuity. Equations
(3.24a—c), (3.23a—¢), and (3.28a-c) correspond, re-
spectively, with Eqs. (8.1a), (8.1d), (8.1f), (6.14a),
(6.14¢), (6.14b), and (8.6a, b), (8.6d) of I. However,
certain additional considerations are necessary to
demonstrate that the variational principle presented
in this paper reproduces the complete system of
equations derived in I—minus dissipation and heat

(3.28)

¢ At this stage it should be noted that A’ could have been
eliminated just as readily as L., since it too yields a zero
term wherever it appears. The reason for retaining A’ and
not L,, will be made clear in the next section.
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conduction. These considerations are discussed in
the next section.

4. INVARIANCE REQUIREMENTS

As noted in Sec. 6 of I, the internal energy function
U cannot be an arbitrary function of the variables
listed on the rhs of (2.20) because it must be in-
variant under all rigid motions of the deformed and
magnetized material. As shown in Sec. 6 of I, this
requirement of invariance under rigid motions en-
ables U to be reduced from the form shown in (2.20)
to the form

U="UC,,N,D,), (4.1)
where

C.o = (0ys/8z,)0y:/ 0.,

N, = (0y:/ 9z )us, (4.2)

Dra = (a.u'k/axr)ayk/axa'

In Sec. 4 of I, a condition—Eq. (4.15)—was intro-
duced so that the system of equations there derived
was consistent with the saturation condition. It was
further shown, in Sec. 6 of I, that this condition
served to make the exchange energy invariant in a
rigid rotation of the spin continuum. (The terms
spin eontinuum and lattice continuum are discussed
thoroughly in Sec. 2 of I.) It is well known, of course,
that the exchange energy is so invariant in the
quantum mechanical description.””® It should be
observed that in the macroscopic description em-
ployed here and in I, the exchange energy refers
to all terms in U containing du;/dx;. The above
mentioned condition is not obtained as a direct con-
sequence of the variational principle presented in
this paper. However, we can show that Eq. (4.15)
of I is satisfied identically if we require (as a physical
principle now) the exchange energy to be invariant
in a rigid rotation of the spin system with respect
to the lattice configuration. In such a rotation the
vectorial components u; and du;/dz,, are transformed
to u!, du!/dz,, respectively, while dy,/dz,, are held
fixed, where

ki = R,
au,’-/ax,,. = Rj.' aﬂi/axmy

(4.3)

and R;; represents an orthogonal transformation.
Since only the exchange terms—and not the mag-
netic terms—in the energy function must be in-

7J. H. Van Vleck, Rev. Mod. Phys. 17, 27 (1945).
8 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
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variant under the aforementioned rigid rotation, we
have

U(ax,,, v B o = U oz, ' ax,.)? (4.4a)
3y: @_.-) _ (91 é.ﬂ_)
U(ax,,, B ard v or,, "M az,)" (4.4b)

Inasmuch as invariance under infinitesimal rotations
is sufficient to insure invariance under finite rota-
tions (this is discussed in Ref. 9; also see Ref. 10)
it will suffice for us to consider an infinitesimal rigid
rotation which is given by

R,-,- = 5.',' + Niiy (4-5)

where 7; is infinitesimal and antisymmetric, and
where (4.4b) is satisfied. Thus, we may write

U —-—U=AU
:174 a(an;/axm)j' sy

= SO0 B Jmmen, E0 T W) =0
from which, with (4.3) and (4.5), we obtain

- 9U  om

= 3(0u;/0%n) 0T

Since the 73;, constitute an arbitrary antisymmetric
tensor, the coefficients of the »;;, in (4.6) must be
symmetric, and we obtain the condition

Iy

oU O _ oU Ou;
0(0u;/0%n) 0%,  0(0u:/0%n) OTm

Any arbitrary function U of C, N, and D will
not necessarily satisfy (4.7). To find the additional
restrictions on U which are engendered by (4.7), we
first note that

AU = 0. 4.6)

4.7)

oU __ _ 9U dy;
8(0p;/9%m) oD, ox,’

(4.8)

and that
Ops/ 0% = D n(024/9Ys), (4.9)

and then substitute from (4.8) and (4.9) into (4.7),
while employing (3.4b) and introducing the symbol
C™* for the reciprocal of C, with the result

(0U/8Dpng) DpCrr = (0U/8D ) DpC . (4.10)

These comprise a system of three independent dif-
ferential equations in the 18 variables C, N, and D,

8 H. Weyl, The Classical Groups, Their Invariants and
Representations (Princeton University Press, Princeton, New
Jersey, 1946), Chap. 2, Sec. 13. .

1077, F. Eisenhart, Continuous Groups Igf Transformations
(Princeton University Press, Princeton, New Jerseg, 1933),
(reissued by Dover Publications, Inc.,, New York, 1961),
Sec. 17.
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which must be satisfied by U. Consequently, U must
reduce to an arbitrary function of any 18 — 3 = 15
functionally independent solutions of (4.10), which
must be composed of C, N, and D. It is obvious
that C and N constitute nine such solutions. Six
additional solutions are given by D;,C.;D;, = Ty,
as may be verified by first noting that for any func-
tion fof T

of O _of 1
aD,, 0T, CaDyn + A0;m DinC

and then substituting from (4.11) into (4.10) to
obtain

d

(4.11)

3 B - 0 - -
3 'fni CwDyD,.Co + _BI‘{.,.-- D;1CoeDmnCr
a - -1 of > e =
aI i,- CrllzD:'menC"“ - a1 {m DibeiD"'”C": 0,

which is satisfied identically. From the definition
of I and (6.20b) of I, it is clear that I' = G of I;
and from (6.16¢) of I we see that

Gi; = (Oui/32:)0ur/02;. (4.12)

Thus we have shown that U may be reduced to
the form

U=UC N,G).

in place of the form shown in (4.1).

In order to show that (4.7) is equivalent to (4.15)
of I, we first solve (3.23b) for aU/3(du;/0z,), with
the result

(4.13)

0.

aU — —_’.A.
d(Ou;/0xn) By TV

and then substitute from (4.14) into (4.7) while
employing (3.3a), to obtain the conditions

AiBui/dy:) = Au(Bpi/dy.), (4.15)

thereby showing that Eq. (4.15) of I is satisfied
identically if the exchange energy is invariant to
rigid rotations of the spin continuum with respect
to the lattice continuum.

(4.14)

Noting that
aU . aU Ou;
0(0u;/9z,)  ° 0G,, oz, ' (4.16)
and substituting from (4.16) into (3.23b), we find
A, = —g Sy U @.17)

0z, G, 0z, '

which is identical with (6.35¢) of I. From (4.17),
(2.8), and (2.6), we obtain the important condition
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A,','M,' = O, (4:.18)

which is identical with Eq. (4.9) of I, and reduces
from 9 to 6 the number of possible components of A.
From (4.15) we may conclude that

e,,,-;A;i(auk/ay.-) = (. (419)

Multiplying (4.19) by p, subtracting the resulting
equation from (3.24b) and rearranging terms, we
find

—ewir 0(pAiim)/0y:
+ e,,,-,pu,,(HI,f + Hiu) = ’Y_IP du,/dt. (4-20)

Multiplying (4.20) by dV, integrating over an ar-
bitrary material region V, bounded by a surface S,
and employing the divergence theorem, (2.2) and
(2.6) we obtain the integral form

—f niek:’lA-'iMk das
8

L M __q_ l
+fvek,.,Mk(H,.+H,.)dv—dtf”MldV, (4.21a)

which in invariant vector (dyadic) notation, takes
the form

fsn-A xM dS

eg gy _d (1
+jVMx(H +H )dV-dtfdeV, (4.21b)

which is identical with Eq. (4.2) of I, and shows
that the angular momentum, of an arbitrary portion
of the spin continuum, is conserved.

Since H" occurs in the equations always in the
form M xH", only that portion of H" which is
perpendicular to M is effective and meaningful, and
we may take

H“M = 0, (4.22)

without loss in generality. [The multiplier A’ was
retained so that (4.22) would be satisfied identically
for arbitrary U. Such a retention was not necessary
with the L,.] Noting that

U _ 38U dy:

aﬂ,‘ - aN 1 Bxl !
and substituting from (4.23) into (3.23¢), and then
form (3.23¢) into (4.22), we obtain

1 U ay,

AI = e ——

B ﬂg aN, oz, Ha-

It should be noted that the equation of the con-
servation of angular momentum of the lattice con-

(4.23)

(4.24)
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tinuum—Eq. (8.10) of I—is not obtained as a direct
consequence of the variational principle. However,
we shall show that Eq. (3.10) of I is satisfied ident-
ically by virtue of the fact that the internal energy
has been made invariant under rigid rotations of
the deformed and magnetized material. (A similar
observation was made and demonstration given by
Toupin, Ref. 11, pp. 884-885.) Since, from (4.1)
and (4.2) ,we have

oU . 93U oy, , oU
a(ayi/axm) =2 aCrm E)x, + a]\[m Hir (4 95)
oU _ 3U dy;
a,u,- ¢9N1 oz, !

in which we have introduced the convention
aU/eC,, = aU/aC,,.

The substitution of (4.25) into (3.23a) and (3.23¢c),
respectively yields with the aid of (4.24)

_ 9, 94 OU 0y, ,  9y; U
Tij = «p axm acmr 61:, + p axm aN,,. By (4263‘)
v 98U dy; 19U 3y,
Hi - aN; 9z, Mg aNl ax, Ml (426b)

Now, 7;; may be decomposed into a symmetric part
r}; and an antisymmetric part 7/, respectively,

which are given by

s _ o, 9y 9U 9y,
i = 20 o 3Cw Oz,
+lpiq‘(%u~+%u-) (4.272)
270N, \dz,,""' = Oz, '/’ )
a_1 28U (iy_ _ 9y )
T = 5 PN \ez, M T Bz i) (4.27b)

Substituting from (4.26b) and (2.6) into (4.27b),
we obtain

7'5‘} = %(M-HI; - HI:'Mi),

which is identical with Eq. (3.10) of L

Equation (4.26b) is identical with Eq. (6.35b)

of 1. Equation (4.27a) is equivalent to Eq. (6.36)
of I, as may be verified by employing (6.31) of L.

Thus, we have verified that the variational prin-

ciple yields the system of equations derived in I
subject to the restrictions mentioned.

(4.28)

Note added in proof: In recent direct correspon-
dence I have learned that work of a somewhat
similar nature has been done by W. F. Brown, Jr.,
J. Appl. Phys. Suppl. 36, 994(1965).

11 R. A. Toupin, J. Ratl. Mech. Anal. 5, 849 (1956).
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The second-rank tensor field ¢+#* is decomposed into its various subspaces under the Lorentz group
and the appropriate projection operators are exhibited explicitly. The most general local, Hermitian,
free-field Lagrangian which can be formed from this field is written down, and the corresponding
equations of motion and subsidiary conditions are derived by means of a variational principle.
Finally some possible applications of this theory are discussed (in particular spin-2 boson theory),
and all the possible couplings of this field to a Dirac particle are listed in full.

1. DECOMPOSITION UNDER THE
LORENTZ GROUP

T is well known that the second-rank tensor ¢"’
can be decomposed under the Lorentz group into
a direct sum of subspaces, one of which has five
components and is a possible candidate for the de-
seription of a spin-2 field.' To be precise, the com-
plete decomposition is into the sum of one spin-2,
three spin-1, and two spin-0 representations. This
decomposition and the appropriate projection op-
erators are now exhibited explicitly.

Firstly, the 16-component ¢*” may be decomposed
into the sum of a 10-component symmetric part
and a 6-component antisymmetric part. This can
be achieved by the use of the operators S and A
defined in terms of the metric tensor ¢** by

28 = g*'g" + ¢"'g™,
24 = g™'g" — g"'g™", (1.1)

which pick out the symmetric and antisymmetric
parts of ¢*”, respectively.
For example,

S = 3 + 9]

= symmetric part of ¢*". (1.2)

To achieve clarity the indices are frequently omit-
ted in the subsequent work whenever it is felt that
no confusion can arise. Hence Eq. (1.2) would read

(1.2a)

and the easily verifiable relations which demonstrate
that S and A are projection operators take the form

S¢ = symmetric part of ¢,

SA = 0 = AS,

S+ 4 =1, (1.3)
88 =8,
44 = A.

* Supported in part by the Office of Naval Research,

1 The greater part of this work was performed at Imperial
College, London, and formed part of an unpublished Ph.D.
thesis (1963).

1 C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958).

The symmetric tensor, S¢, can be further de-
composed into a nine-component traceless part and
a single-component part which is diagonal, by the
use of the operators

T=1"¢"" and R=S—-T. (14)
Again it may be verified that
RT =0 = TR,
TT =T, (1.5)
RR = R,

R + T = S [= 1 for the subspace (S¢)],

so that these are indeed projection operators.

The single component subspace (T¢) is a spin-0
representation but both (R¢) and (A¢) contain rep-
resentations of more than one spin value, and can
be still further decomposed. For this purpose it has
been found most convenient to work in momentum
space, and k* in the following work is defined as
the 4-momentum.

In standard notation, the decomposition

¢ = R¢ + To + A¢ (1.6)
is equivalent to a decomposition
D®D = [D(1) @ D(1)] + [D(0) ® D(0)]
+ [D(0) ® D(1) + DQ) ® DO,  (1.7)

where D = D(1) + D(0) transforms like a vector,
and D(s) is the irreducible representation corre-
sponding to spin s. Hence R should decompose as
a direct sum D(2) + D(1) + D(0), and 4 as D(1) +
D(1), giving the final decomposition

D®D = D) + 3D(1) + 2D(0). (1.8)

It is therefore necessary to find the projection op-
erators, P; (+ = 0, 1, 2), which will produce the
decomposition of R¢. The most general dimension-
less fourth-rank tensor P**"”" which can be con-
structed from £* and ¢g*’, so as to be symmetric
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under the exchanges u <> » and 4’ < »' and to be

traceless in the pairs (u, ») and (¢’, »’), can be written
in the form
P‘:vu’y’ —_ a'.g;u'gu’v’ + bi[gm‘rgyy’ + guv'gyy']

—~ 2(2a; + bk + ¢ KKK

¢, | 9Bk + ¢ kR

ty R

+ gMV k"k/-‘ + g”# kﬂk”

+ 4[2b; + 4a; — ¢ JE'E'E R /K (1.9)
At this point it is possible to find P,, P,, and P,,
by imposing the projection operator conditions

P¢Pi = 6;;P“ (110)

2
D P, =1=1g"g" +¢"¢"] — 1g"¢""", (1.11)
1 =0

and identifying the three solutions exactly by finding
the number of eigenvalues which should of course
be (2 + 1) for P,. In practice however, it is easier
to find P, separately by imposing the conditions

PP, = Pz, (1.12)
Py = 0. (1.13)

This method was used by Fronsdal' who gives
general formulas for the projection operator of high-
est spin in any such decomposition. The result of
the ensuing tensor manipulation may be conven-
iently written in the form:

P;vu’v’ — %[o;m’evv' + ouv'ayu’] _ %04"0‘1’1'”

where

(1.14)

¢ = g — KK /K. (1.15)

Notice that P53 = 5 = (2s + 1) where s = 2 as
was required.

As P, has been found explicitly, the application
of conditions (1.10) and (1.11) to the general form
(1.9), to find P, and P, is now comparatively simple.
The results may be taken in the convenient form

Py = 97 /12,
_ 1 {0"“%%"' + kR J (1.17)
1 2k2 , , , , ’
+ 'K + 07 KE
where
¢ o= g" — 4% /K. (1.18)
It is a simple matter to check that P4* = 1 and
P*r = 3, so that the subscripts are indeed the
appropriate spin values.

By similar methods to the above, the six-compo-
nent subspace (A¢) decomposes into two three-
component subspaces, by means of the projection
operators
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1 [g* Kk — gk
A[ = 'é'Ei , , , At
— "K'k + g7 KR (1.19)
Al = A - AI, (1.20)

and it is easy to verify directly that Ay =3=A4}"",
so that both subspaces indeed do have three
components.

2. LAGRANGIAN THEORY

The purpose of this section is to find the most
general local, Hermitian, Lagrangian which can be
formed from the second-rank tensor field, and the
corresponding equations of motion and subsidiary
conditions derivable by a variational principle from
this Lagrangian. It is the author’s experience, how-
ever, that the complexity of the second-rank tensor
field and the fourth-rank tensor operators acting on
this field tend to produce confusion unless the basic
pattern of the method to be used is understood
clearly from the start. Therefore, the most general
Lagrangian for a vector field will be derived first,
and it is hoped that this will provide a concrete
example to guide the reader through the later work.

A. Vector Field

(¢). The Lagrangian and the Equations of Motion
A peutral spin-1 particle of mass m is most usually
described by a four-component Hermitian vector
field A*. This field contains in addition to the spin-1
field, a subsidiary sealar field, and is in faet a direct
sum D(1) 4+ D(0), the projection operators being
Py = ¢ — B'E/E, (2.1
P, = K'K /. 2.2)
The most general local free-field Lagrangian, bi-

linear in this field, and containing no higher than
first derivatives, may be written

L = am®4%g” A"
+ A’y ¢ + cg* g™ + dg*g"’ 19" A", (2.3)
where a, b, ¢, and d are constants. Application of a

variational principle to this Lagrangian yields the
Euler-Lagrange equations

2am’A* — 2b3"9°A” — 2c O° A* — 2d8*9°A” = 0,

which may be written in momentum space as
AMA" =0,

where

A” = [2am® + 20K°|P,

+ [2am® 4 2E*(b + ¢ + d)]P,. (2.4)
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Since the field A* decomposes into the direct sum
(P, A)* + (P.A), Egs. (2.4) may be separated in
the form

PAA =0,
PoAd = 0,
or in full
[2am® + 2bK%)(P,A)* = 0, (2.4a)
[2am® 4 2K*(b + ¢ + d)](P,A)* = 0 (2.4b)

(i2) Application to Spin-1 Theory of a Neutral Boson

If this is to be a free-field theory for spin-1 par-
ticles of mass m, Eq. (2.4a) must give the Klein-
Gordon equation, and (2.4b) must give the sub-
sidiary condition that the scalar part of the field
vanish. Hence, b = 3,0 = —3, ¢+ d = —4%, and
the most general Lagrangian is given by
L = —im*A*A* 4 } 8"479"A”

+ c*A’FA" — (c + 3)0"A"3’A’. 2.5)
In the standard treatment of this field (see e.g.,
Bogoliubov and Shirkov®) ¢ is set equal to —2 and
the Lagrangian is given by

= —1m’A*A" + 1[8°4" — 9"A'T. (2.6)
It may then be verified that the energy density
given by the application of Noether’s theorem to
this Lagrangian is positive definite.

Consider now the effect of introducing an inter-
action, defined by an interaction Lagrangian of the

form J*A*, between this field and some external
field. The equation of motion (2.4) then becomes

A4 = J¥ 2.7

and separates into
(K — m*)(P,A)" = (PJ)" (2.7a)
—m*(PoA) = (PoJ)". (2.7b)

Hence,
(£ — m)A* = (PJ)* — (& — m*)(PJ)/m’

= [g" — K'&"/m’)J’, (2.8)

and thus, by Umezawa’s method,® the numerator
of the propogator of the vector field is d* = ¢** —
k%’ /m’. It is important to notice that although the
Lagrangian contains an arbitrary parameter ¢ (if
such considerations as the positive definiteness of
the energy and the quantization of the theory are

2 N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Interscience Publishers, Inec.,
New York, 1959).

3 H. Umezawa, Quantum Field Theory (North-Holland
Publishing Company, Amsterdam, 1956).
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not considered). The equations of motion and the
propogator are well determined.

B. Second-Rank Tensor Field

(?). The Lagrangian and the Equations of Motion

The first task is to write down the most general
Hermitian Lagrangian bilinear in ¢*” and containing
no higher than second derivatives. Making use of
the notation developed in Sec. 1, this may be
achieved in the convenient form

L=m"[a(R¢)"" (R¢)"*"+b(Te)" (Te)" +c(4¢)" (A$)"']
+ 8'(R¢)"'[dd"(R$)" + €d"(Re)"]
+0"(4¢)"[pd"(4¢)*" + nd*(4¢)"]

+ g0’ (R9)"8"(44)™ + 3" (49)"9"(Re)"]

+ r{0"(T) 9" (Te)"] + ulo*(49)"' 8" (A¢)"]

+ s[0"(T9)""3"(Ag)™ + 9*(A4)*" 9" (Te)"]

+ yl9*(T9)" 8" (Re)" + 0"(Re)"'8" (Te)"]

+ 2[0*(49)"'8" (R$)" + 9*(Re)*"9"(49)"]

+ 1[0"(R$)*"8 (Re)"]. 2.9
The task of applying a variational principle to this
Lagrangian to obtain the Euler-Lagrange equations

dL/3¢" — 3"L/3(8%") = 0 (2.10)
is tedious, but can be simplified by inserting the

unit operators in each term. Thus for example the
term with coefficient g would be written

ak¢uvRuvaﬂAkﬂu’r' aa¢n'v’
g + a)\qsvawaBR)\ﬁp'v' au¢u’v’ )

After manipulation the final result of this process
may be expressed in the form

AT =, (2.11)

where
A = Py[2am® + 2dK°] + P,[2am® + k*(2d + e + v)]

+ Po[2am® + 1k*(4d + 3e + 3v)] + T[2bm® + 3rk*]
+ A,[2em® 4 2pK7] + A[2em® + E*(2p + n + w)]
- (g + z)k2[AAIP‘ + AP,AI]

+ $V3yk*[Ap,r + Arrl, (2.12)
and
1 [4e% ] ¢ g
= —a" =— 2.13)
Ap,r V3 [ e g 4 43 ' ( A
Arp, = —g"'ll/"'"'/‘i\/g, (2.14)
(e A2 R AN w’kukv’
Mm=§ﬁk? ¢ ,,} (2.15)
+ g‘”' k'k“ — gV’ kl‘kl‘
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(2.16)

1 [k + g* k'
AP,AJ = -2};5 [ , . . ’]-
- "B — g7 KR
The reasons for the explicit choice of the operators
defined by Eqs. (2.13)-(2.16) will be explained
shortly, but the significance of their presence should
be appreciated immediately. The set of six projection

operators
0; == {Pﬁg Pls PO: T) A:;AI}

is not a sufficient basis for the space of operators
allowed in A. This is to be contrasted with the case
of the vector field, where the two projection op-
erators did indeed form a basis. In the present case,
it is necessary to introduce four more independent
operators to form such a basis. The particular choice
defined by Egs. (2.13)~(2.16) is considered by the
author to be the most convenient, and it is hoped
that the notation is almost self-explanatory. They
have the properties

OiAO.'O; = Ao;o; = AO;O,'Oi) (2-17)
Aoioihoz0 = 0y, (2.18)

and their products with any other 0 or A are zero.

In view of the decomposition performed in Sec. 1,
the Eq. (2.11) may be decomposed into the six
equations

0Ap =0 (E=1,---,6), (219)
which written out in detail are
[2am® + 2dK°}(P:g) = 0, (2.192)
[2am® + E*(2d + e + v)](P)
~ (g + 2)°Apa,(49) = 0,  (2.19b)
[2am® + 3E*(4d + 3e + 30)](Pod)
+3V8k*yAp,r(T¢) = 0,  (2.19)
[2bm® + 3rE%)(T9)
+ 3V3kyArp,(P) = 0,  (2.19d)
[2em® + &(2p + n + w)(A:$)
- {g+ z)kaAArPg(qu&) = 0, {2.19¢)
[2em® + 2pK°](A9) = 0. (2.19)

These equations are the analog of (2.7a) and (2.7b)
for the vector case. Note, however, that for the
present case certain of the equations are coupled
because of the presence of the four additional
operators.

(#). Application to the Theory of a Neuiral Boson of
Spin 2

If this is to be a free-field theory for spin-2 par-

ticles of mass m, then the set of equations (2.19)

791
must give the Klein-Gordon equation
& — m’)(Pg) = 0, (2.20)
and the subsidiary conditions
00 =0 0; = Py, (2.20b-f)

that the spin-1 and spin-0 paris of the field vanish.
At this point a choice of approaches presents itself,
The condition T¢ = 0 is purely algebraic, as are
the pair A,¢ = 0, 4,¢ = 0 taken in the form 4¢ = 0.
Thus, these conditions may be imposed on the theory
@ priori, by stipulating that ¢ be symmetric, or
traceless, or both. Those cases will now be dealt
with separately.

Case 1 (¢" is taken to be symmelric and traceless).
The set of equations (2.19) reduce to the form

[2am® + 2dE*}(Py) = 0, (2.21a)
[2am® 4+ k*(2d + e + v)](P@) = 0,  (2.21b)
[2am® 4 3K*(4d -+ 3e + 3)](Pop) = 0. (2.21¢c)

It is elearly not possible to adjust the parameters
to obtain Eq. (2.20a) and the subsidiary conditions
simultaneously. This result was obtained by Frons-
dal’ in a rather more abstract manner.

Case 2 (" 1s taken to be symmeiric). The equa-
tions (2.19) reduce to the form
[2am® + 2dK*}(P:) = 0, (2.22a)
[2am® + E*(2d + ¢ + 0)I(P9¢) = 0, (2.22b)
[2am® + 3°(4d + 3e + 3v)](Pod)
+ 3V3yE'Ar(T9) = 0,  (2.22¢)

[2bm® + 3r&°)(Te) + 3V3yk*Arp, (Pep) = 0. (2.22d)

Choosinga = —%,d = 4 and (e + v) = ~1 produces
the equation (2.20a) and the subsidiary condition
on (P¢). The equations (2.22¢) and (2.22d) may
then be combined by use of the properties of the
0’s and A’s, to give

[(m® + 3%%) (2bm® + §r%°) + 2k'y"l(ap) = 0, (2.23)
where a = P, or T', Hence, the subsidiary conditions
on (Py) and (T'¢) may finally be obtained by setting
r = —3y% b = 3 y ¥ 0. There resultsa two-
parameter family of Lagrangians given by Eq. (2.9),
where

d =14,

= ""3y23

e-p = —1,
2b = 3y # 0,

and all other parameters are zero, and a single-
parameter family of equations of motion specified
by A given in Eq. (2.12) with the above values

a=—'%}

(2.24)
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of the parameters (y being the only remaining free
parameter).

Case 83 (3" s traceless). The above type of
analysis gives, omitting the details,
b=r=s=y =0,

y d=%: et+v= '—%; p =0,

¢ =3+ u) =909+ 2)" =0.

There thus results a four-parameter family of La-
grangians specified by e, n, g, and 2, and a single-
parameter family of equations of motion specified
by (g + 2).

a= —

Bl

(2.25)

Case 4 (¢ 7s completely general). Here the re-
sults are
a=—% d=4% p=0,
I+e+o)n—+u=(+2°
=2(1l +e+v)° =0, (2.26)
(2 + 3e + 3v) = 3°
= 8b(1 + 2e + 3v)* b # 0.

There results a seven-parameter family of Lagrang-
ians; and a three-parameter family of equations of
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The equations of motion are now modified to the
form

Ao = J, (2.28)

where (in analogy with the vector field case) this
equation may be decomposed, and the propogator
for the field ¢*” can be derived by Umezawa's
method,® utilizing the properties of the 0’s and A’s.
The results are given below (without the tedious
but simple derivations) for each of the above cases
2, 3, and 4.

Case 2 (9" ts symmetric).
2 2 2
O N
m 2
+ B (hpr A )+~1(m2+1°—2)T] (2.20)
2‘/§y PoT TPo 3y2 2 . .
Case 3 (¢" is traceless).

oy k2__m2
d##” =P2+__"LT___

kz
—'m2P0 - (‘g’ + mz)Pl

2
motion specified by (¢ + v), y, (g + 2). - _k_’—z (Aarp, + Ap,a)
% g + 2) (2.30)
Consider now the effect of introducing an inter- T A '
action between ¢ and some external field (e.g., a - (—3— - mz) m
Dirac field), specified by an interaction Lagrangian g
of the form n m’A,
L = J* Ilv, (227) L g(g ~+ 2)2 "
where the tensor current J*” is independent of ¢*’. Case 4 (9" is completely general).
[ —Pi[m® + K*(1 + e + )] — Po[m® + $6°(2 + 3¢ + 34)] ]
2
+(1—;%j—”) [m*ds + {m* — K(L + ¢ + )} 4]
E—m®
d—P2+T _kz(l—i—e—l—v)"'[A 4 ] (2-31)
(g + Z) AP, P,AT
2
o523
+ 37 {[2m* — k*Q + 3e + 30T + V3 yk*[Ap,r + N

The author would like to draw the reader’s attention
to the free parameters which are present in these
propogators. These parameters have no counterpart
in the usual theories of lower spin (e.g., the spin-1
theory derived in Sec. 2A), and there seems to be
no method by which they can be determined or
interpreted in this classical theory. (See however
Sec. 2Biii). Rivers* has now extended this theory

¢ R. J. Rivers, preprint, Imperial College, London (1964)
(to be published).

and provided a method of quantization. His method
of quantization gives strong restrictions on the pa-
rameters, leading to the conclusion that only Case 2
of the above theory is possible, and that in this case
y=1. Thus, the theory is given by a single-parameter
family of Lagrangians (specified by e) leading to
unique field equations specified by

A= (K — m)Py — m*P, — (m* + 3k°)P,

+ 3T(m2 - %kz) + %\/gkz[APoT + Azpl (2.32)
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and a unique propagator specified by
d = P,{evaluated with &* = m®}
=P, + (& — m)/m'
— 2 1 2 . 2 1 2 2
X[ m'P,+ [3k m' Py + 3k +M]T/3J (2.33)
+ (&*/2v3)[Apor + Ars.]
(327).
It is possible by suitable choice of the parameters
in the Lagrangian to utilize the set of equations
(2.19) for other purposes than the description of a

spin-2 field. To be precise, the particular choice
a # 0,d = 0 gives from Eq. (2.192),

P2¢=O

Other Possible Applications

(2.34)

so that the remaining five equations in (2.19) form
a set of equations of motion and subsidiary condi-
tions on the spin-1 and spin-0 fields. This gives
rise to several fascinating possibilities, and in par-
ticular, it seems to provide a natural framework in
which to describe two spin-1 fields simultaneously.’
In this context the g, and z terms in the Lagrangian
(2.9) could be given the interpretation of interaction
terms between the two spin-1 fields giving rise to
direct transitions of one field into the other. This
concept is rather a mild generalization of the direct
transitions between a photon and p meson fashion-
able in recent work® on nucleon form factors.

3. THE COUPLING OF THE SECOND-RANK
TENSOR FIELD TO DIRAC PARTICLES

The purpose of this section is to write down all
possible eouplings of the second-rank tensor field
to Dirac particles, and to classify these couplings
according to their parity, C' parity, and the part
of the field to which they couple. To define the
notation, consider a general vertex at which a par-
ticle of integral spin is absorbed by a free Dirac
particle of mass p, and let P=p'+p and k=p'—p,
where p and p’ are the initial and final values of
the momentum of the Dirac particle. With this nota-
tion, the relevant interaction current j (P, k) may
be defined by the equation

{p's'| F(k) |ps) = U, @)§(P, B)U.(p), (3.1)

where F and j carry the requisite number of indices
for the spin of the particle emitted or absorbed.
All insignificant constants have been absorbed into
the F(k) which has the transformation property

5G. Feldman and P. T. Matthews, Phys. Rev. 132,
823 (1963).

¢ See, e.g., P. T. Matthews, Proc. Conf. Elementary
Particles, Aix-en-Provence 2, 87 (1961).
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eF(k)e™ = nF(k), (3.2)

where € is the operation of charge conjugation, and
7, is the charge parity of the particle absorbed or
emitted.

Using the approach of Lehmann, Symanzik, and
Zimmermann’ so that

lim f (@) Au,(p)e” """ dz |0),  (3.3)

to—t®

Ip,s) =

the interaction current may be written in the form
i, 8) = — [ da dy D,

X O] TWWFEF@] 10) D., (34
where D, = (iv8/dy — m) and D, = (—1y3/dz — m)
and the T indicates that the time-ordered product
is to be taken. The notation is such that the Dirac
equation takes the form (iv"9, — m)¥(z) = 0, and
adjoint and charge conjugate spinors are defined by
the equations

g =9v'4, ¢, =—-CF", (3.5)
where the T and { respectively indicate transposition
and Hermitian conjugation, and 4 and C are defined
by the equations

v, = Av, A7, A = A4,
—Cy,C7, cT = C,

Invariance under the operation of charge conjugation
implies that

'
(3.6)

v =

iP, k) = ej(p, ke
or, using Egs. (3.2) and (3.3) and transposing

(3.7)

i'P, k) = f dex dyy ™ T (—iy"9/dz — m)

X O] T[PI@)nFyo)] [0) Gv" 8/dy — m).  (3.8)

When the variables of integration z and y are inter-
changed, and Eq. (3.5) is used, this leads to the
result

i"P, k) = 5C f dux dyy e "

X D, O] TlY@FE) ] |0) D.Cc™
= n.Cj(—P, k)C™’
or
C7'(P, k)C = 3" (—P, k). (3.9)

For the present case of a second-rank tensor field,
there are six symmetric and four antisymmetric
second-rank tensors of positive space parity which

"H. Lehmann, K. Symanzik, and W. Zimmermann,
Nuovo Cimento 1, 205 (1955).
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TasLe I. The couplings of a virtual spin-2 boson to free Dirac spinors.

np = +1 np = —1
PP’ 1 (kk ) PP’ 1 (kk o
P T\l ¢ (P>) oo gtz e (P3)
P 4+ +*P" 1 (k"k' “,> By 4+ 'K KR
in 3\ —97) @) BT TR (Py)
7]‘: — +1 kukr g}lv kl‘k' Iid
k2 __4“ (Po) Ys ?_ g4 (Po)
g (7 vsg" (T)
Py — y'P" |:k"7" — v“k']
A -
2u ( 1) Ys % (AI)
By + vk [P“v' + +*P* | Pk + K'P’
2 (P 1) Ys 2% -+ kz (P 2)
P kP
———j—z— P) PY + #P’
" Y| T (Py)
PR — k"P*
4#2 (AI) P“ [ uP! Pukv _ kan
7. =— 1 75[ 4 2 Y + X ] (Al)
By — "% H
T (49
P'E — k“P’:I
—_— A
ie"" + gk'é (K'Y — +'K) 75[ 2u (4
(4)
P'E — P’ v PR — KPP’
-+ k2 75[“7“ + k2 :I (Al)

can be constructed from P* k* and Dirac matrices,
and which are linearly independent. These may con-
veniently be taken as

Symmetric Antisymmetrie
P'y" ++"P’, PR — E'PT
PP, 7. =+1; By =% 7. =—1;
k"ic:’ o = é[v“*r' - 7]
g,
P 4 E'P7,

}nc = _1; P“'Y’ - YMP'r Ne = +1,
Ky + vF

where the C-parity assignment has been determined
by the application of Eq. (3.9). A similar procedure
can be carried through for the tensors of opposite
space parity which may be taken to be the above

used set multipled by vs from the left, and the
corresponding C-parity assignments may again be
derived by use of Eq. (3.9).

All that remains is to investigate which combina-
tions of these tensors are projected out by the op-
erators defined in the first part of this paper. The
results of this piece of tensor manipulation are sum-
marized in Table I, where the notation is such that
if a general one of the expressions is designated
by «*’(0;) then

00" (0;) = 8;;0"(0,).
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We study the exact bootstrap solutions to four well-known models of meson~baryon scattering in
the nonrecoil, one-meson approximation. The models are the neutral scalar theory, the charged
scalar theory, the symmetric scalar theory, and the neutral pseudoscalar theory. A bootstrap solution
is defined to be a solution satisfying Levinson’s theorem of potential scattering. It is found that the
existence of a bootstrap solution depends crucially on the high-energy conditions, which enter the
problem through a cutoff function and through subtractions in the dispersion relations. In all the
models considered there is no bootstrap solution with no subtraction. With one subtraction there
exists more than one bootstrap solution. However, the requirements that (a) the meson-baryon
coupling constant should be different from zero, and (b) there should be no inelastic threshold below
the elastic threshold, render the bootstrap solution unique. Positions of bound states and their coupling
constants depend on two arbitrary parameters, which may be taken to be the cutoff momentum and

the subtraction constant.

1. INTRODUCTION AND SUMMARY OF RESULTS

HIS investigation' is motivated by a desire to

find examples of the bootstrap mechanism.? The
physical idea behind the bootstrap is that none of
the particles observed in nature is elementary, but
that all are composite states of one another, so that
all masses and coupling constants are determined.

It is generally accepted that the S matrix satisfies
certain dispersion relations, which represent a system
of coupled nonlinear integral equations for the S-
matrix elements of various scattering channels, and
the particles are represented by poles in the S-matrix
elements in the appropriate channels. The dispersion
relations themselves do not seem to possess a unique
solution with a unique distribution of poles. Unless
they are postulated in an ad hoc way, the poles can
be determined only by an additional condition on
the 8 matrix. The bootstrap mechanism, being an
example of such a condition, is therefore not a
property of the equations satisfied by the S matrix,
but a property of the solution.

Since it is difficult to consider the complete S
matrix, efforts® in the practical implementation of
the bootstrap idea have concerned themselves with
a small number of scattering channels, such as =
scattering and w—n scattering. The coupling of the
selected channels to other channels is either neglected,
or taken into account through some cutoff param-

* This work was supported in part through funds provided
by the U. S. Atomic Energy é)ommission under Contract
AT (30-1)2098.

1 A summary of the results of this work has previously
been published. K. Huang and F. E. Low, Phys. Rev. Letters
13, 596 (1964).

2G. F. Chew and 8. Mandelstam, Nuovo Cimento,

19, 752 (1961); F. Zachariazen and C. Zemach, Phys. Rev.
128, 849 (1962).

eters. In so doing, one may have to allow the possibil-
ity that bootstrap solutions, whatever they are
defined to be, may not be unique, and that the
nonuniqueness reflects the insufficient account taken
of other channels.

In this investigation we study some simplified
models of meson-baryon scattering, with the purpose
of testing whether a reasonable, precisely defined
bootstrap criterion does limit the choice of a solu-
tion. We study five well-known models of meson—
baryon scattering in the nonrecoil, one-meson ap-
proximation: (a) neutral scalar theory, (b) charged
scalar theory, (¢) symmetric sealar theory, (d) neutral
pseudoscalar theory, (e) special case of symmetric
pseudoscalar theory.

Each of these models has a crossing matrix that
is appropriate to the intuitive idea of a bootstrap
mechanism, i.e., exchange of particle in a channel
produces attraction in a crossed channel, and vice
versa. [In case (a) the two channels are the same.]
The 8 matrices of these models share with the S
matrix of physical processes the general properties
of elastic unitarity, crossing symmetry, and analy-
ticity. They have however the simplifying feature
that the scattering proceeds via a unique state of
orbital angular momentum of the meson: S wave
for scalar theories, and P wave for pseudoscalar
theories. This feature enables one to obtain the most
general solution to the first four models, and a
special class of solutions to the pseudoscalar sym-
metric theory, namely solutions for which the S
matrix is a product of the S matrices of the neutral
pseudoscalar theory. In all models the unknown in-
teractions at high energies are taken into account
by the introduction of a cutoff function, and by
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allowing subtractions in the dispersion relations. The
cutoff function is chosen to be v(w) = «*°/(¢* + «*)°,
where w is the energy of the meson, ¢ is the momen-
tum of the meson, ¢ = 0, 1, 2, .-+ , and « is the
cutoff momentum (x > 1). There are therefore 2 4 n
arbitrary parameters, where n is the number of
subtractions.

The criterion for a bootstrap solution is taken to
be Levinson’s theorem of potential scattering, which
states that the difference between the scattering
phase shift at infinite energy and at threshold is
~ 7 times the number of bound states in the scatter-
ing channel in question. The motivation of this
criterion is desecribed in the text.

The results are as follows:

1. For all the models considered there exists no
bootstrap solution satisfying an unsubstracted dis-
persion relation.

2. There exists no bootstrap solution for the
charged scalar theory, except for a degenerate case
which reduces to the neutral scalar theory.

3. There exists a unique bootstrap solution to
the neutral scalar theory with one subtraction. The
solution is characterized by three parameters: « > 1,
¢ > 1, and the effective subtraction constant. De-
pending on their values, there may either be no
bound state or one bound state, which may or may
not be the target baryon.

4. All bootstrap solutions to the symmetric scalar
theory with one subtraction must have ¢ = 1. There
are however several solutions, differing in numbers
and locations of bound states. The solution is ren-
dered unique by making the physical requirement
that the meson—baryon coupling constant must be
different from zero (i.e., the target baryon must
appear as a bound state in the / = % channel).
The unique solution is labeled by two arbitrary
parameters: the cutoff momentum « > 1, and an
effective subtraction constant 8, % 0. For 8, < 0
there is one bound state in each of the two channels
with I = 1 2. For 8, > O there is one bound state
in the I = 1 channel, and no bound state in the
I = £ channel. The bound state in the I = } channel
is by construction always the target baryon.

5. All bootstrap solutions to the neutral pseudo-
scalar theory with one subtraction must have ¢ = 2.
There are again several solutions differing in numbers
and locations of bound states. We can render the
solution unique by imposing two physical require-
ments, namely (a) the meson—baryon coupling con-
stant must be different from zero (i.e., the target
baryon must appear as a bound state in the J = }
channel), and (b) there must be no inelastic thres-
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hold below the elastic threshold (i.e., no bound state
can have a smaller mass then the target baryon).
The unique solution is labeled by two arbitrary
parameters: the cutoff momentum « > 1, and an
effective subtraction constant. For all possible values
of these parameters there is one bound state in the
J = } channel, representing the target baryon, and
no bound state in the J = 2 channel. An explicit
construction of the solution is easy only for a certain
range of the subtraction constant, in which we find
that there is a resonance in the J = £ channel.

6. In the special class of solutions to the symmetric
pseudoscalar theory the bootstrap solutions are triv-
ially related to the bootstrap solutions of the neutral
pseudoscalar theory. They fail to contain the phys-
ically interesting solution that corresponds to low-
energy mn scattering, namely a solution with the
target baryon as a bound state inthe I = %,J = 3
channel, and no other bound states in this or other
channels.

The general conclusions drawn from these results
are as follows.

(A) These models all differentiate sharply between
cutoff funetions of arbitrary power on the one hand,
and subtracted dispersion relations on the other.
That is, without subtractions no bootstrap solutions
exist, no matter how strong the cutoff. This suggests
that the existence and properties of bootstrap solu-
tions of the complete S matrix depend sensitively
on the finer details of high-energy phenomena.

(B) If we apply the usual bootstrap philosophy
to the solutions described earlier, we would expect
that the positions and coupling constants of bound
states, virtual states, or resonances to satisfy a cer-
tain set of equations. For the case of two bound
states with positions w, and w,, and squared coupling
constants \, and )\,, and with «, = 0 taken to be
the target baryon, these equations should have the
forms

0 = fi(ws, M,y As,y @, %),
we = folwa, My As,y g, 1),
Moo= Fi(ws, My e, g, 1),
A = Falws, M, Aey g, &),

where ¢ is the subtraction constant, and « is the
cutoff momentum. The mass of the seattered meson
serves only as a scaling parameter, and is taken
to be unity. Since there are five variables and four
equations, we should expect w,, A,, and A, to be
determined up to one arbitrary parameter. Qur re-
sults disagree with this counting, for there are two
arbitrary parameters in all the solutions obtained.
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This must mean that one of the equations above
is an identity. We may perhaps understand the
reason for this by regarding the static models to
be the limit of some relativistic model as the mass
M of the target baryon tends to infinity. We should
then rewrite the equations in the forms

M=M++ fl(wzy Ay Agy 85 K, M);
M4 w =M+ fz("’27 Ay Agy 0y K, M)y

A o= Fl(w‘b Ay Ay g, K, M))

A = F2(°’2; A1y Aoy g, &, ]ll)~
For the static models to be valid, the functions f,
and F; must be insensitive functions of M, as M — o,
That is, these equations can be satisfied for what-
ever M, as long as M is sufficiently large. Con-
sequently, one of them must become an identity
when we pass to the limit M/ — .

We end this section by listing the unique boot-
strap solutions referred to earlier.

Neutral Scalar Theory

Let the scattering amplitude be f(w) = v(w)h(w),
where »(w) is the cutoff function given by v(w) =
«°/(¢° + «*)°, with w being the energy of the meson,
and ¢ = (o® — 1)}. Then

hw) = [g — &’L(")]7,
where ¢ is a positive constant and
2e¢ @
L) =2 [ dpplo* + D@ + 1 — o)
o
X (pz + KZ)::]—I.
For ¢ > L(1) there is no bound state. For ¢ < L(1)
there is one bound at w, 0. For ¢ = 0 there is
a double pole in k(w) at w = 0, which represents
the target baryon. With ¢ = 0, the two arbitrary
parameters arec¢ = 1,2, 3, --- ,and « > 1.

Symmetric Scalar Theory

There are two scattering channels with I = 1, .
The respective S-matrix elements are

S, = [B/(B — DI(B — 2)/(B + 1D,
Ss = [B/(B — 1)]D,

where

Blw) = 3 + iz log (w + ¢) — (w/@)Bs] (B = 0),

m—mm—mma—wmm+MM)

(1 + i) + ig/0)A + ig/s)A — ig/s))’
B, < 0)

(1 — 1)1 — ig/)(A — ig/s0)(1 + 1q/s,)

1 + i + g/ + ig/s0)(X — ig/s1)’

| B > 0)

D(w) =
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XS
—%Baf(x)
xl
-285(x)
L [2-(3- 2)8]t(0)
B-3+ha)fe
g d a5,
’/, - -2\4— —g—-ﬁo2
-2 /,“’z
B‘L -7

0 A

fie)= 1+ 1)°

Fic. 1. Coupling constants and bound states in the
bootstrap solution of the symmetric scalar theory. The two
parameters labeling the solution are the cutoff momentum «
and the effective subtraction constant 8,. The bound state
inthe I = % channel is always at « = 0, with squared coupling
constant \;. The bound state in the I = § channel is at w,,
which exists only for 8y < 0. Iis squared coupling constant
is A;. The formulas attached to various portions of the curves
give the asymptotic forms of the curves.

with s, = (1 — w?2)}, where w, is the unique root
of B(w,) = v satisfying the following conditions:
Fory = 0, either 0 < w, < 1, or w, is pure imaginary.
Fory 21,0 < w, <1.

For B, < 0, there is a bound state in the 7 = 1
channel at w = 0 representing the target baryon,
and a bound state in the I = 2 channel at w = w,.
The respective squared coupling constants are

_ 25,(1 + 8:)(81 — 82)(k + 85) _ 1 .
b = wy(l — 8)(81 + 82)(k — 82) <1 K2)

There are positive because 0 < s, < s,.

For B8, > 0, there is only one bound state, i.e.,
the target baryon. The meson—baryon squared coupl-
ing constant is in this case

It is positive because 0 < 5, < 1, and 0 < s < 1
for B, < 1/m, 80 > 1 for 8o > 1/7.

The two arbitrary parameters are the cutoff
momentum « > 1, and the effective subtraction
constant B, > 0. Graphs for A,, A;, and w, are given
in Fig. 1.
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There are two scattering channels with J = 1,
The respective S matrix elements are
S, = [B/(B — D][(B — 2)/(B + 1D,
S; = [B/(B — 1]D,
where
B(w) = § + ilx"" log (0 + @) — (w/¢)Bo + B:0")]
Bo + 8, # 0).

The two constants 8, and 8, are related by a thres-
hold condition given below, The function D(w) is a
real analytic rational function of g, such that D(1) =1,
ID(w)] = 1 for w > 1. It is completely determined
by the conditions that

K. HUANG AND F. E. LOW

double poles at i (x2 — 1)},
D(w) have { simple poles at all the roots of B(w) = 0,
simple zeroes at all the roots of B(w) = —1.

The threshold condition is
D(w) — 1 + 0(¢"),
w—]1

which is a relation between B8, and 8, for given «.
For all B, 81, and «, there is only the target baryon
bound state at » = 0.

For 8, > 0, 8, > 0, the roots of B(w) = v are
located as follows: B = 0 at w = 0, =z, Xz¥*
where z is complex; B = —1 at o = —owy, 9, ¥*
where 0 < w, < 1, and y is complex with Re y > 1.
Lettings, = (1 — o)} go = &* — D} 0o = ¢° — 1)},
we have

Diw) = (1 - WK)’ (A = 1@ + ig/s))(1 + ¢/¢)A — ¢/¢BA = ¢/¢)(_+ ¢/¢D)

1 < 2q/k

The meson—-baryon coupling constant is

_ o1 1—s 1y
vt e (i Y)

The threshold condition reads
$'+2Im (g’ — ) =142
For « ~ 1, this reduces to the approximate relation
B+ B~ (1L + D7

There is a resonance in the J = % channel rep-
resented by a pole at w = y on the second Riemann
sheet. For ¥« ~ 1 it is near threshold, and the posi-
tion and width of the resonance are respectively
given by the approximate expressions

Rey~ 1+ (1 +«1)72,
Imy~3iv3{1 +«H)™
The two arbitrary parameters are the cutoff mo-
mentum x > 1, and the effective subtraction con-
stant G, (or 8,).
2. DEFINITION OF THE PROBLEM
A. The Static Models

We state the mathematical problem common to
all the models considered in this investigation. Let
 be the energy of the meson, and q its momentum?®:

g=( — 1L (1)

In the complex «» plane, the branch cuts of ¢ are

3 We use units in which 2 = ¢ = m = 1, where m is the
mMeson mass.

(I + i@ — ig/s:)(1 + ¢/g%)A — ¢/@)A — ¢/¢DA + ¢/q))

chosen to run from 1 to «, and from —1 to — o,
and g is defined to be real and positive just above
the cut (1, «). It follows from this definition that
on the first Riemann sheet

q*(“’) = '_Q(‘*’*): (2)

Im ¢ > 0,
so that 7¢ is a real analytic function in the cut w
plane. Let S,(w) be the S-matrix element for the
channel o (which refers to total spin or isospin de-

pending on the particular model). It is customary
to write

S.w) = 1 + 2i¢*" * v(w)ha(w), 3)

where [ is the orbital angular momentum, and »(w)
is a cutoff function, chosen for definiteness to be

- 2c 2 ¢
v(w) =k /(q +K)7 (4)
k> 1, c=0,1,2,---.

The condition « > 1 ensures that v(w) does not
introduce poles of S, on the real axis. The function
h.(w) satisfies a dispersion relation expressing the
requirements of elastic unitarity, crossing symmetry,
and analyticity, which may be taken as basic pos-
tulates, or as consequences of a Lagrangian theory*'®:

h@) = Pu@) + 1 [ do’ (@) ow)
X [%———(f’_l[ + ; Aas w'—ﬁ—“ :‘E)J )

+F. E. Low, Phys. Rev. 97, 1392 (1955).
5 . F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
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where A,z is a crossing matrix with the general
property
Z Aa'/A'yﬁ = bap. (6)
~

It is specified later for the different models. The
term P, is a sum of poles located on the real
axis between =£1:

e

+ ZA“Bw.-i-w] ’

)\ia Z 07

P () =

oo <1 (7)
The physical value of %,.(w), for real w = 1, is

defined to be the limit of A, (w + 7€) as e — 0".

We also consider cases in which (5) is replaced by
a subtracted dispersion relation, because subtrac-
tions, together with the cutoff function, are the
means at our disposal to take into account the high-
energy interactions not treated in detail in the static
models. For the case of one subtraction, (5) should

be replaced by
h@) = Pal@) + Co + 2 [ & (")

x[Jh—(“’—)J- 3 A M"’—’i] )

where the subtraction is made at w = 0, and C,
are the subtraction constants. If the subtraction were
made at a different point, the dispersion integral
would differ from the above only by a finite con-
stant, which can be absorbed into C,. By crossing
symmetry, 2 s A.sCs = C,. Hence a subtraction
introduces only one arbitrary parameter.

Each nonvanishing positive value of A, in (7)
gives rise to a bound state in the channel «, with
A:q. as the squared coupling constant. The bound-
state energy w; is physically the mass difference
between the bound state and the target baryon.
Thus, if the target baryon occurs as a bound state
in some channel, then the corresponding w; is zero.
If A;a < O the pole would be a ghost state, and
must be excluded. The first term of (7) displays
all the bound states in channel «, while the second
term ariges from crossing symmetry. In a relativistic
theory the crossed poles in P, appear as short cuts.
The only poles of &,(w) in the cut w plane are those
in P,{(w). However, h,(w) may have poles on other
Riemann sheets. In particular those on the second
sheet (reached from the physical sheet by crossing
the right-hand cut), have simple physical meaning
if they lie close to the real axis. Namely, they rep-
resent resonant states if Re w > 1, virtual states if
Rew < 1.

w —w
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The physically admissible solutions of (5) must
have the proper threshold behavior and high-energy
behavior. The former requires k,(1) to be finite,
in order that

Saw) = 14 0(g™™). ®
w—1

The high-energy condition depends on the number
of subtractions in the dispersion relation. For the
case of no subtraction, as expressed by (5), the re-
quirement that the dispersion relation be a conse-
quence of the analyticity of h.(w) and Cauchy’s
theorem implies

ha(w) - 0.

W

©)

For w > 1, the unitarity condition embodied in the
dispersion relation states Im h, = ¢*'**» |h.|?, which
implies

[hal)] < [0 (@)™ (10)

We rule out an essential singularity at o = o,
so that the behavior near w = o is independent
of directions. Therefore (10) either implies (9), or
is implied by (9), depending on »(w).

When there are subtractions the condition (9) is
relaxed. We see from (10) that if »(w) = 1, then
no subtraction is required, and if one were made
it could be removed. Hence we need subtractions
only if a cutoff is introduced such that lim,..
¢ o(w) < 1.

The mathematical problem defined so far is self-
consistent, for there exist solutions to it. However,
a solution to the problem is physically reasonable
only if two other requirements are met, namely,

(a) the target baryon should be a bound state
in the channel with the appropriate quantum
numbers,

(b) no bound state should have a smaller mass
than the target baryon (i.e., no w, should be negative).

If (a) were not true, the meson-baryon coupling
constant would be zero. If (b) were not true, then
there would be an inelastic threshold below the
elastic threshold. In either case the static theory
with elastic unitarity would be of even more doubtful
validity as a physical model than is usually the case.

(w > 1).

B. Criterion for a Bootstrap Solution
For the physical range of energies w > 1, let
S.,(w) = eziSa(w). (11)

This defines the phase shift §,(w) up to an additive
multiple of 7, which may be fixed by an arbitrary
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convention. In potential scattering, Levinson’s the-
orem® states that

Asa("’) = 5(:z(°°) - aa(l) = _Tba$ (12)

where b, is the number of bound states in the channel
a. We take over this statement as the condition
for a bootstrap solution. The motivation comes from
two sources: analogy to potential scattering, and
current ideas on N/D solutions of dispersion rela-
tions, as we now explain.

In potential scattering Levinson’s theorem implies
that all bound states are results of the interaction,
for the phase shift becomes identically zero (mod =)
when the potential is turned off. Let us extend this
interpretation of (12) to the present case. If we
define an elementary particle to be a bound state
that persists when the interaction is turned off, then
(12) states that there are no elementary particles
in any of the channels.

To see the connection with current ideas on boot-
strapping, let us write A,(w) in the so-called N/D
form’:

ha(w) = Nu(w)/Daw), (13)

where N ,{(w) has only the left-hand cut, and D, (w)
has only the right-hand cut. To specify N, and
D, uniquely, we require that D, has no pole, and
that

lim [log D{w)/log »] = 0.

@

(14)

Levinson’s theorem is equivalent to the statement
that every bound state tn the channel « is a zero of
D,(w), and vice versa. Thus, all the bound state
poles of k,{(w), which are contained in the first term
in (7), are zeros of D, {(w). Furthermore, the “pseudo-
poles” arising from crossing symmetry, ie., those
contained in the second term in (7), are poles of
N (w). Such an allotment of poles agrees with the
view embodied in current approximate bootstrap
calculations.” They make use of the idea based on
analogy with potential scattering, that the “crossed
poles” in N ,(w) furnish a generalized potential which
gives rise to the bound-state zeros in D,(w). It is
then hoped that the self-consistency of this procedure
would determine the energies and coupling constants
of all bound states.

To show the equivalence with Levinson’s theorem,
let us temporarily adopt the convention §.(1) = 0.
As is well-known,” a function ;' having the same

8 N. Levinson, Mat. Fys. Medd. Dan. Vid. Selsk. 25,
No. 9 (1949).

7 See, for example, G. F. Chew, S-Mairiz Theory of Strong
Interactions (W. A. Benjamin, Inc., New York, 1961),
Chap. 10. :
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right-hand cut as h,(w), but having no left-hand
cut, is the Omnés function

D lw) = exp [_w ;wojl de’

aa(‘-"') ]
7 7 , 15
@ — e —w 0¥
where w, is a fixed number less than 1. This function

has neither pole nor zero on the physical sheet.
As w — o we have®

lim [log D, (w)/log w] = §,()/x.

Wt

X

(16)

The condition that D, (w) has b, zeros and no pole,
and the normalization condition (14), then imply
that D,(w) i8 D,(w) times a polynomial of degree
b,, with b, + 8.(w)/r = 0, which is Levinson’s
theorem. Conversely, Levinson’s theorem implies
that D,(w) has b, zeros, which, because of (13),
must be poles of h,(w). Since b, is by definition
the number of bound states, it is possible to define
D, (w) so that its zeros are the bound states.

The mathematical problem is then the following:
Given a specific static model, find out whether there
exist solutions satisfying (12), for any choice of the
high-energy condition, which includes a choice of
the cutoff function v(w) and the number of subtrac-
tions, with the restriction that if v(w) = 1 then there
must be no subtraction,

3. NEUTRAL SCALAR THEORY AND
CHARGED SCALAR THEORY

A. General Solution

The neutral scalar theory describes the seattering
of a neutral scalar meson by a fixed baryon. There
is only one chanmnel, and the crossing matrix is 1.
Its solutions have been considered by Lee and
Serber,® and Castillejo, Dalitz, and Dyson.'® Math-~
ematically it may be considered a special case of
the charged scalar theory.

In the charged scalar theory there are two scalar
mesons of opposite charge, which are coupled in a
charge-symmetric manner to a charged baryon.
There are two channels with @ = 1, referring
respectively to the charge of the meson. The crossing

matrix is
0 1
a= (3 0).

so that crossing symmetry simply means 2,{—w) =

8 M. Sugawara and A. Kanazawa, Phys. Rev. 126, 2251
(1962), Appendix 2.

¢ T. D. Lee and R. Serber (unpublished). See Ref. 10.

12 L, Castillejo, R. H. Dalitz, and F. J. Dyson, Phys.
Rev. 101, 453 (1956).

an
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h_i(w). Castillejo, Dalitz, and Dyson'® have shown
that the most general solutions are
2w % de’ qv(e’)

I 12

3 (w) w? + wR(‘*’);

1 2w f dew’ q (w”)
h—l(‘-’-’) o -
where v(w) is given by (4), and R(w) is a meromorphic
function with the property R*(w) = R(w*). The
dispersion relation for this model implies that
Im (wh,)/Im w is positive definite, hence h,(w) has
no zero in the complex plane. This means that R(w)
can have poles only on the real axis. The requirement
that A,.(w) has no pole in the complex plane is
satisfied by requiring Im (wh,)™'/Im @ # 0 for
Im & # 0, which leads to the form

(18)

2 wR(-"-’);

Rw) = —aw+d— 3~
n en w (19)
g2 0, a>0.

The poles ¢, will be referred to as CDD poles."

It is easily seen that the threshold condition (8)
is satisfied. As w — o, h,(w) approach either 0
or a constant. Hence we need at most one subtrac-
tion in the dispersion relation. The high-energy re-
quirements are summarized in the following table:

Asymp. No. sub-
form Cutoff traction
a>0 -2 >0 0
a=0,d>0 w ! 020 0 (20Y
a=d=20 w ! c=20 0
constant ¢ 2> 1 1

The h(w) for the neutral scalar theory is given
by either formula in (18) with R(w) chosen to be
an odd function. It is therefore a special case that
need not be treated separately.

B. Phase Shifts

The phase shifts are obtainable from (18) by using
the formula %, = (sin 5.) (exp ¢ 6,)/quv, which

leads to
cot 8,(w) = [(w)] '[J(w) + «wR(W)], @1)
cot 3_,(w) = [@w)] " [J(w) — wR(—w)],
where
O el 2edp
N P’
| v e e T @

1t Note that e, is a zero of h,(w) if and only if e > O.
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in which (4) has been used. The bootstrap criterion
requires Ad,/w = —b,. Sinee b,, the number of
bound states, must be a nonnegative integer, we
immediately rule out solutions for which Aé, > 0,
or for which —Aé,/= is not an integer. From (21)
we find

cot 8,(w) — [gh r,
cot 31(w) — & N—aw’ + do + @),
ame (23)
cot 5- 1(w) [qh (=17,
cot 6-1(w) — 0 (—aw’ — dw + Q),
where @ is the positive-definite number
_ 2 [ p’
- T j; dp (p2 + 1)(p2 + K2)c + ; Gn- (24)

If there is no cutoff (¢ = 0) we must have ¢ > 0
in order that Ad./m be an integer. We note that
the expression (24) diverges if there is no cutoff.
In that event @ in (23) should be replaced by the
number —1, which however may be neglected be-
cause a > 0. We may therefore use (23) as it stands
for all e.

According to (21) each CDD pole with ¢, > 1
contributes = to Ad,, and each with ¢, < —1 con-
tributes = to Ad_,. Let

= No. of CDD poles with ¢, > 1,
= No. of CDD poles with ¢, < —1. (25)

With the help of (23), we construct Tables I and II,
which are self-explanatory.

An examination of Tables I and II shows that,
with respect to the choice of a and d, there are
only two possibilities: either ¢ > 0, or ¢ = 0 and
d = 0. To see whether the bootstrap criterion can
actually be satisfied for either case we turn to an
examination of poles and bound states.

C. Poles and Bound States

The poles of h,(w) are exhibited in the pole term
(7), which we rewrite for the charged scalar theory
in the form

A
Pl(w)=—f—”w—w”+zw+w,’
A m
Poy(w) = 2% — Zw_w,+ Zw+ (26)
)‘nZO; )\;207 O< ,wnl <1) O< [w""l <1

Clearly h, and h_; must have the same number
of poles. The number of bound states in each
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TaBre I. A8 = &{ o) — 8(1), charged scalar theory.

cot §(1) cot & =) Ad/x Conditions Bootstrap criterion
+o 4o ny (1) >0 a=0d>0 ny =0b =0
—c + o ny—1 Ml) <0 a=0d20 eithern, = 0, b, =1
orng =1,b =0
4 o — @ n, +1 hi(1) > 0 eithera > 0
or Impossible
a=0d<90
— — @ ny hi(l) <0 eithera > 0
or ne =0, =0
a=0d<0
channel can be seen by examining P,(w) alone: a y..0
pole of P,(w) at » # 0 is a bound state in channel 1 . R
if its residue is negative; otherwise it is a bound M = No. of CDD poles with [e,| < 1,  (31)
state in ch.annel —1. T.he pole of 1‘31(w) atw = 0 1 if k(1) <0, and h(—1) <0,
follows a different rule: if A, > 0, it is a bound state .
either in channel 1, or in both channels; if Ao < 0, ¢ =71 0 if h(Dh(~1) <0, (32)

it is a bound state either in channel —1, or in both
channels. The choice involved can be made arbi-
trarily. Since this theory does not distinguish be-
tween a short cut and a pole, its simple crossing struc-
ture makes it impossible to recognize a ghost state
with || < 1. This is not true of the symmetric scalar
and neutral pseudoscalar theories (discussed later)
except for the isolated point w = 0.

To find the number of poles in h,(w), given B{w)
and »(w), it proves convenient to consider the
function

H (@) = wh.(w). (28)

We first find the number of poles of H,(w) by finding
the number of zeros of 1/H,(w), through an appro-
priate application of the formula

1 fl) _

P Ry TP
where z and p are, respectively, the number of zeros
and poles enclosed in the contour of integration.’
It is shown in Appendix A that

No. of polesof H, = M + o,

(29)

(30)

—1 if hQ) >0, and h(~1) > 0.
If H,(0) # 0, then h,(w) has one more pole than
H ,(w);if H,(0) = 0, then &, (w) has the same number
of poles as H,(w). In the former case the target
baryon is a bound state; in the latter case it is not.

Thus,
No. of poles of A,
- {M+o*+1 if w = 01is a pole,

M4+ e

The latter is the case if and only if there is a CDD
pole with ¢, = 0.

D. Bootstrap Solutions

We refer to Tables I and II, and recall that the
bootstrap criterion rules out all but two possibilities:
either a > 0, or ¢ = d = 0. For ¢ > 0, we must
have b, (1) < 0, h;{(—1) < 0; hence by (32) ¢ = 1.
By (30) h.{w) has at least one pole. This is in-
consistent with b, = b., = 0. Therefore this case
is excluded.

(33)
otherwise.

TapLe II. Ad; = 5.4{ =) — 8.4{1), charged scalar theory.

eot 6.4(1) cob 3y =) Ad.afr Conditions Bootstrap criterion
+ o + n. M(—1)>0a=0,d<0 n. =90,b,=0
— + n.—1 M(—1) <0 a=0,d<0 either n. = 0, b4 =1
orf. =1,by4 =0
+ o — @ n_+1 ha(—1) > 0 eithera >0
or Impossible
a=0,d>0
) - n. M{(—1) < 0 eithera >0 n=0>b,=0

or
¢a=0,d>0

2 We always count a pole or a zero as often as its order.
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We consider from now on the case a = d = 0,
for which a cutoff is required in order that — A8, /»
be an integer. The solution (18) becomes

___1___ — 2 2 gn
) wh) +w ;w-en, 34
1 ey g
-__h_l(w) = —e L)+ w zﬂ:w-l-e,.’ (35)
where
L)
L a3 .
- T j; dp (pZ + 1)(p2 + 1 — w2)(p2 + K2)c (36)

If the CDD poles are symmetrically placed about
w = 0 then A,(w) = h_,(w), and the theory reduces
to the neutral scalar theory. According to Tables I
and II, there are only four possibilities for the choice
of (n., n_), namely (0, 0), (1, 0), (0, 1), (1, 1). Of
these (1, 0) and (0, 1) are mathematically equiv-
alent. In Table III we display all the distinct pos-
sibilities, with the corresponding requirements for
hi(£1) and b.,, which are read off Tables I and II.
The number of poles of k. {w) is also listed. They
are obtained from (32) and (34) by taking N = 0,
which is a necessary condition because b,, < 1.

The last column in Table III gives the bootstrap
criterion. The last three cases are clearly impossible
because there are more poles than bound states. The
other two impossible cases fail to meet the bootstrap
criterion for the following reason. The number of
polesis M + 1if w = 0 is a pole; otherwise it is M.
If w = 0 is a pole, then M = 0, and from (35) we can
show £,(1) = A;(—1) < 0. If w == 0 is not a pole,
then M = 1, and the CDD pole must have ¢, = 0.
Again we can show from (35) that A, (1A, (—1) > 0.
This is inconsistent with A, (1)%,(—1) < 0, as re-
quired in Table III.

TasrE III. Bootstrap criterion, charged scalar theory.

No. of Poles Bootstrap
ny n. k(1) k(—1) - [Eq.(33)] b b, ecriterion
+ + M-1 0 0 M=1
- - M+ [2= 1 1 M= {0*
1 1
0 0 + — M 4 [ls 0 1
- -+ 0 1 0 Impossible
0 - + >2 0 Impossible
1
- — >3 0 1 Impossible
1 1 —_ — >4 0 O Impossible

sUpper number applies if « = 0 is a pole; otherwise lower number applies.
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There now remains the top two rows in Table III,
which indeed fulfill the bootstrap criterion. They
represent three eases in all, with M/ = 0if w = 0
is a pole of h.(w), and M = 1 otherwise. In the
latter case the CDD pole must have e, = 0.Thus
all three cases reduce to the neutral scalar theory,
with

hw) = [g — o’LW)]  (g=>0), (@7

where L{w®) is given by (36). We note that h(w)
has no zero on the physical sheet. The three cases
mentioned above correspond to different values of g¢:

g > L(1): No bound state,
0 < g < L1): Bound state at w,, (38)
0 < |wy <1,
g = 0: Bound state at w = 0.

The residue of the pole has the correet sign at either
+w, or —w,. The target baryon is a bound state
only in the limiting case ¢ = 0, where it is repre-
sented by a second-order pole at w = 0. Presumably
the second-order pole is to be viewed physically as
a near cancellation between the true pole and the
short cut. As g increases from 0, the second-order pole
splits into two simple poles, which eventually move
to the second Riemann sheet. As w — o, h{w)
approaches a constant, and therefore satisfies a once-
subtracted dispersion relation. There are three un-
determined parameters: ¢ > 0, x > 1, and ¢ =
1, 2, 3, - -+ . There are no bootstrap solutions other
than (37).

In conclusion, we find that there is no bootstrap
solution for the charged scalar theory, except for
the degenerate case &, = k., = h, where % is a
unique family of bootstrap solutions for the neutral
scalar theory (Eq. 37).

4. SYMMETRIC SCALAR THEORY
A. General Solution
The symmetric scalar theory describes the scat-

tering of a scalar S-wave meson of isospin 1 from
a fixed baryon of isospin i, with conservation of
total isospin. There are two channels labeled by
a = 1, 3, corresponding respectively to total isospin
% and £. The crossing matrix is

4 =1{_1 4}‘ (39)
2 1

3

Wilson™ has studied some special solutions to the

13 K. Wilson, Ph.D. thesis, Physics Depart; i
fornia Institute ‘of Technology (1961) (unpy usﬁ’e‘ﬁ?."’ Gl
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model. The most general solution is given by
Wanders,"* who considers the mathematically equiv-
alent problem of a the neutral pseudoscalar theory.
We briefly state the Wanders solution for this
problem.

The solution is given in terms of the S-matrix
element S,, instead of the function &, :

8, = [B/(B — DI(B — 2)/(B + DD,

(40)
8, = [B/(B — 1D,
whers
Blw) =3 +dr " log (@ + ¢) — (@/9)8)]
=7 'sin”" o — i(w/9)Bw), 41)
D) = [1 — iga@)]/[1 + tgalw)],  (42)

where a(w) and B{w) are two arbitrary even mero-
morphie functions of w ,with a*(w) = a{e™®), §%(w) =
B{«®. Thus B is an odd function of w, and D is
an even function of w. The solution so far is the
most general consistent with unitarity, crossing sym-
metry, and the property S8*(w) = S.(v¥*), which is
a consequence of (5). The functions « and 8 are
to be further restricted so as to satisfy other require~
ments of the model.

It is convenient to rewrite D by noting that it
is a meromorphic function of g. We may represent
it as a rational function of ¢, times an entire function
with no zero, which may be written as exp [¢¢f(q)],
with f*(¢) = f(—¢). Requiring D to have no essential
singularity at w = « reduces f to a positive constant,
which must be zero in order that there be at most
a finite number of resonances in the scattering. Thus
D is a rational function of g. We see from (42) that
D*(w) = D{w*), and that |[D(w)| = 1 forreal w > 1.
Therefore D may be represented in the form

1 — g 1 0 — .9 4 a%g)
D) = 11 1 + ir.g I,.I I+ a1 — a9’

Imr, =0, Rea, > 0.

(43)
The over-all normalization is so chosen that
D—1,
q—0
whieh is necessary for the threshold condition
S, — 1.

=0

The choice of the arbitrary function « in (42) is
now replaced by the choice of the sets of numbers
{r,} and {a,}. We note that each g, with Im a, > 0
(< 0) gives rise to four complex poles (zeros), of

1% (3, Wanders, Nuovo Cimento 23, 817 (1962).
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D{(w) that are mirror images of each other with
respect to the real and imaginary axes. Each r,, > 0
(< 0) gives rise to two poles (zeros) of D(w) that
are either real or pure imaginary, placed symmetric-
ally about the origin.

The threshold condition is satisfied by requiring
B(1) = 0. At high energies

Blw) — (i/r) logw — Blw), (44)
D) = 1 +di/fw + doyfe” -+ -+ (45)
Therefore
— Sa - 1 —3 2o~-1
T T2 ow”
Ba 4 D “]
where u, = —2, y; = 1, and ¢ is defined in (4).

The condition (10) is satisfied for all choices of ¢
and B(w). We note that since B{w) is an even mero-
morphic funetion,

Blw) — ko™
Thus B(w) =~ log w if n < 0, and Bw) ~ o™
ifn > 0.

The number of subtractions required in the dis-
persion relation for 4, is determined by the choice
of ¢, n, and the numbers d,, d;, ete. For example,
for no subtraction we have the following conditions:

n =0, 1, £2, ---). 47

¢ = 0:  No restriction on f{w) and D(w);
e=1: n21, d, = 0; (48)
¢ = 2: n > 2, d, =d; =d; = 0;

For the case of K subtractions, we have the following
conditions:

3(1 + K):
No restriction on 8{w) and D(w};
¢ > 3(1 + K):
n2c—3(1+K),
B. Phase Shifts
For @ > 1 the phase shifts §,(«) are obtained

from (40) by setting S,{0) = exp [27 §,(0)]:
8(@) = ¢lw) — 0w} — Y(w),

O ==

plus condition on D(w). (49)

8(w) = ¢(w) — O(w), (50)
where ¢, 8, and ¢ are defined by
B . 2i¢ B—2 _ -2y 28
B—1=¢ gFi1-¢ » D= G
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and are explicitly given by

cot ¢ = —2[r ' log (w + ¢) — (w/Q)B)],

cot ¢ = % cot o, (52)

1 2¢Ima,

-— -1 .
0= ;tan (raq) + ;ta,n 1= ¢ Ja

P

Let A = ¢(=) — ¢(1), &¢ = ¥(=) — ¥(1),
and A9 = 6(») — 6(1). From (52) we see that
cotgpis £ atw = landatw = «. Hence A¢p = Ay,
and we have

As, = §,(=) — 8,(1) = —A®,

(33)
Ad; = 85() — 85(1) = Ap — Ab.
We can obtain A¢ and A6 from (52):
Ab/w = M, — M_ + 3(m, — m_), (54)
A¢p/r = N, — N_+ o,
where
M. = No. of a,’s in (43) with Im a, 2 0,
m, = No. of r,’s in (43) with r,, 2 0, (55)

N. = No. of poles of 8(w) on real axis w > 1,
with =+ residues,

and ¢ is 0 or 1, as given in Table IV. Reecalling
the remarks after (43), we note that M,(M_) is
1 the number of complex poles (zeros) of D{(w), and
that m,(m_) is £ the number of real or pure imag-
inary poles (zeros) of D(w). The N, + N_ poles
of B(w) are repeated on the real axis 0w < —1,
because 8(w) is an even function.

C. Poles and Bound States

The poles of h,(w) must conform to (7), from
which we can read off the bound states in channel «.
We see from (3) that S,(w) has the same poles as
h.(w), plus the poles of v(w), which are of order ¢,
located at w = =i(x* — 1)%. These cutoff poles must
be poles of D(w), for the only other possible way
to introduce a pole in both §; and S; is to make
B? — 1 = 0; but this equation has no roots on the
imaginary w axis [see (62)].

TaBLE IV. ¢ of Eq. (54).
n2>1 n<0
kB(1) > 0o ks(1) <0 8(1) >0 s(1) <0
0 1k > 0)
—~1(k < 0) 1 0

s If B(w) has a pole at w = 1, the sign of §(1) is defined to be that at
w=1+¢ ¢— 0"

805

Apart from the cutoff poles, all other poles of
S.(») on the physical sheet must lie on the real
axis between w = ==1. A zero of S, (w) on the physical
sheet, on the other hand, is a pole of S,(w) at the
same point on the second sheet, because the uni-
tarity condition may be stated in the form S’ (w) =
1/8" (w), where the superscripts identify the Rie-
mann sheets.

From (40) we see that poles of S,(w) can occur
only at the poles of D and the roots of B® = 1.
The converse is not true, because a pole of D may
be cancelled by a root of B = 2, and a root of
B? = 1 may be cancelled by a zero of D. In order
that S, has the poles allowed by (7) and no others,
the following rules must be observed in the choice
of D:

1. The poles of D(w) ean oceur only at (a)
+i(* — 1)}, (b) roots of B = 0, (c) real roots
of B = 2 lying between o = 1.

2. There must be zeros of D at all complex roots
of B> = 1. Other zeros of D (called extra zeros)
may be freely chosen.

When poles do oceur in S, (w), we have to compare
the resulting pole structure of S,(w) with (7) to
find out whether it is a bound state, and if so in
which channel. The residues of bound-state poles
in 8,(w) have the opposite signs to those in h,(w),
because in (3) the factor 7q is negative for || < 1.
To illustrate the structure of bound-state poles in
S.(w), it suffices to give the pole terms @, of S, (w)
when there is one bound state in each channel,
omitting the cutoff poles. Let w, and w; be the respec-
tive bound-state energies, and A,, A; the effective
coupling constants, related to the actual squared
coupling constants A, [as defined in (7)] by

A = W(w)(1 — o). (56)
Then
o — M 1 A4 A
w—w 3w+t 3w t+w’
2 A
(Paz_gwl-;-w—%{iw—%wal}liw’ (67)
A, 20, A; 2> 0.

The connection between poles and bound states are
summarized in Table V.

To find the bound states, we need to know the
roots of

Bw) =1, (58)
where v is real. Since B is an odd function B(w,) = ¥
implies B(—w,) = —¢v. Since B*(w) = B(w*), non-

real roots must occur in complex conjugate pairs.
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Tasie V. Bound states in symmetric sealar theory. The constants A, are related to the squared coupling constants )\,
by (56). This Table is also valid for the neutral pseudosealar theory if we replace A, by —A,.

Bound-state
energy Which channel Conditions on B, D Coupling constants
0 1, 3, or both B=0,D= o AL — As = $res (BD)
BD has simple pole
0 <lwl <1 {woinl,and-—woin& B=0,D=o A;=%A;={ 3 res (BD)
or vice versa BD has simple pole —3 res (BD)
1 B 4 1 = 0 (simple zero) A = —$res [DAB +1)]
D #0, o
3 B — 2 = ( (simple zero) Az =2res D
D = o {simple pole)

Some properties of the roots are studied in Appendix
B, and the results are summarized in the following
theorem. Let'

K, = No. of roots of Eq. (58). (59)

Let B(w) be characterized by the five parameters
k, n, N4, N, defined in the following:
ﬁ(“’) - k"’h) (n = 07 il) :}52: )
N. = No. of poles of 8(w) on real axis
w > 1, with =+ residues,
2N = No. of poles of B{w) not on real axis
o] > 1.

(60)

The total number of poles and zeros of B(w) any-
where on the physical sheet are then respectively
given by

Py =2(N + N, + N.),

Zy =2 + N + N, + N). ©1)
The theorem states
1. There is no root on the imaginary
axis except for v = 0,
2. 'There is no root on the real axis
lw] > 1 for any v, (62)
3. K,=K._,,
4. K, is independent of v for [y| > 3§,
5. K, — K, = 2(A¢/7),
6. K, =1 — v+ max (Zs Ps),
where A¢/w is given by (55), and
(63)

) = {1 if Blw) hasapoleat o =0,
0 otherwise.

D. Necessary Bootstrap Conditions

Using (53) and (12), we write the bootstrap
criterion in the form

Ae/ﬂ' = bl,
A¢/7r = b1 - b3.

(64)

Table V shows that b, can oceur only at the roots
of B = 0, —1, and b; can occur only at the roots
of B = 0, 2. Accordingly we write

bx = blO + bu;

by = bs + bsz:

where by, by, are respectively the number of bound
states in channel 1 at the roots of B = 0, —1;
b3q, bas are respectively the number of bound states
in channel 3 at the roots of B = 0, 2. Apart from
the cutoff poles, the poles of D can occur only at
the real roots of B = 0, 2 between w = 1. Apart
from the “extra zeros,”’ the zeros of D can oeccur
only at the roots of B = 0, 1, 2, and must occur
at the complex roots of B = =+1. Since D is an
even function, and B an odd function, D = 0 at
B = 4 implies D = 0 at B = —v. Each zero or
pole in D contributes to A8/r according to (54).
Thus we write

Ab/m = 3o + (A6, + A, + Af)/x — 3X, (66)
where ¢ is defined in (4), and A8, /7 is the contribu-
tion to Af/x arising from a pole or zero of D at
B = v, and 1X is the contribution from extra zeros
of D(X =0,1,2, ---). We now find the relation
between A8 and b, by using Table V. In doing so
we assume that all coupling constants have the
correct sign, an assumption requiring verification
only if we succeed in finding a bootstrap solution.

Consider first the roots of B = —1. Let there
be K,z real roots and 2K, complex roots:

Km + 2Kw = K1o (67)

Every complex root must be cancelled, and some
or all of the real roots may be cancelled by zeros
of D. Suppose K/ real roots are cancelled. Then

Ab/m = —K ¢ — 3Kiz, bu = Kz — Ki;. (68)
Using (67) we obtain
Al /r = (b, — K)).

(65)

(69)
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Next consider the roots of B = 2. Let there be K.z
real roots and 2K, complex roots:

sz + 2Kgg = K;. (70)

Poles of D may be placed at the real roots but not
at the complex roots. Suppose K}, of the real roots

are cancelled by poles of D. Then A8,/ = 3Kz
and b;, = K. Hence
Aby/x = 3bs,. 71

Combining (64), (65), (66), (69), and (71), we find
a necessary condition for a bootstrap solution:

A¢/w = ¢ — K, + 2(A6,/7) — (byo + bs0) — X. (72)

We now consider the roots of B == 0. It is obvious

from (41) that there is always a root at w = 0, |

unless B(w) has a pole there. In the former case,
the number of roots at w = 0 must be odd, as we
can deduce from the fact that K, is odd and that
the roots at « 0 must always occur in pairs
at ko, 0¥ Accordingly we designate the number
of roots as follows:

1+ 2my) 8,0}

2K 5, real roots,

at w = (:

at w = 0: (73)

2K,; pure imaginary roots,
4K, complex roots,
where » is given by (63). Thus
(1 + 2mg)8,0 + 2(Kor + Kor + 2Koe) = K, (74)

Let there be a factor [{1 — ig)/(1 + @)’ in D to
cancel some of the roots of B = 0 at w = 0, and
let other poles of D be so chosen as to cancel respee-
tively 2K/, 2K},, 4K}, of the other kinds of roots.
Then

A00/7|' = %p + %(KGR + K(;I) + Kie. (75)

We are free to choose these numbers as long as we
observe that BD can have at most a simple pole
at the real roots, and cannot have a pole at the
nonreal roots. This leads to the restrictions

Kie € Kooy, Kir £ Ko, Kir S Koz + 7,
p < (1 + mo)svo;

where the last inequality is obtained by noting that
near w = 0, BD & v, where s = (1 4 2m,)é,, — 2p.
Only for » = 0 and p = 1 + m, can there be a
bound state at @ = 0. The number z in (76) is the
number of pairs of simple poles of BD located at
some or all of the 2K, real roots (which must oceur
in pairs symmetrically placed about the origin). If

(76)
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all the 2Ky, roots are simple poles, then 0 < z < Koz
If some of the roots are of multiple order, then
0 < ¢ < (No. of distinet roots). From Table V
we see that

bio 4 bgo = 22 + 5(’11, 14 ’mo);

where 8(z, y) is the Kronecker delta.
Combining (74), (75), and all but the last in-
equalities of (76), we have

2(A90/ﬂ') < %Ko -+ P — (% + mo)avo + z. (78)
Substituting this into (72), using (77), and using
(62) to express K, in terms of K, we find
0Lc¢c—-3K,—X—-2z+p

= G + mo)do — 8@, 1 + my).  (79)
Using now the last inequality in (76), and dropping
some obvious terms, we reduce this to 0 < ¢ —

3K, -+ 39,0.. Upon using (62) to express K, explicitly
we find

0Lec~ N+ N.+ N_)— max(n,0). (80)

To test for a bootstrap solution we first use (80).
If it is satisfied we then proceed to the sharper
condition (79). If (79) is still satisfied the solution
will have to be examined in more detail. We now
establish the following theorems.
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Theorem 1. There exists no bootstrap solution
satisfying an unsubtracted dispersion relation.

Proof. Suppose there is no cutoff (¢ = 0). Then
1t is clear from (80) that N = N, = N_ = n = {,
and by (63) and (62) we have » = 0, K, = 1.
Thus (79) is reduced to

0<p—Q0+m)—dp,1+m)—X—2 (81

which is impossible because p < 1 + myand z > 0,
22 0.

Suppose ¢ > 1. If there is no subtraction, the
high-energy condition (49) requires n > ¢. Then
(80) requiresm = ¢ > 1, and N = N, = N_ = 0.
From (62) we find K, = 1 + 2n, which again reduces
(79) to the impossible condition (81). q.ed.

Theorem 2. For a once subtracted dispersion rela-
tion, a bootstrap solution must have ¢ = 1. If,
further, the target baryon is required to be a bound
state, then B(w) = B,, where 8, is a nonvanishing
constant.

Proof. According to the high-energy condition
(49), ¢ > 1. We first show that ¢ = 1. .

If ¢ > 2 then (49) requires n > ¢. On the other
hand (80) requires n < ¢. Hence n = ¢. By (80),
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(63), and (62), we must have
N=N,=N_.=0,
» =0,
K, =14 2n.

These requirements reduce (79) to (81), which is
impossible.

Forc¢ = 1, (80) requires N + N, + N_ + max
(n, 0) = 0, 1. Henee there are only the following
possibilities:

(82)

N N. N. =a » K,
1. 0 0 0 0 0 1

2. 1 0 0 —-1,0 1 2 (83)
3. N+N.+N_=1 —1,0 0 3. '

Substituting » = 0, K, = 3 into (79) reduces that
inequality to (81), which is impossible. Hence case
3 is eliminated. Cases 1 and 2 can satisfy (79), but
for case 2 the target baryon cannot be a bound
state, for » = 1. Thus only case 1 remains, which
corresponds to B(w) = constant. We must rule out
B(w) = 0 because it violates the threshold condition
of the model. q.ed.

E. Bootstrap Solutions

We consider bootstrap solutions satisfying a once-
subtracted dispersion relation, with the target baryon
as a bound state. By Theorem 2 we must havec = 1,
and

Blw) = B # 0. (84)

According to (48) the high-energy behavior is 2, =
w/log w, verifying the fact that one subtraction is
needed. We may thus regard 3, as an effective sub-
traction constant. For given 8, and cutoff mo-
mentum « the solution is unique, the proof of which
is given in Appendix C. We merely quote the unique
solution here.
The S-matrix elements are given by (40) with

B) =3 +ilr" log (w + ¢) — (@/9)8]  (85)

and D{(w) is given by separate expressions for 8, > 0
and 8, < 0.

For B, < 0 we have K, = K, = 1. The roots
of B(w) = # are all real and are denoted as follows:

B(w) @ s = (1 — )}

0 0 1

+1 Fu, 8 (86)
+2 2w, Sz )
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where
0 < Wy < (5 < 1,
0 < 8 < 8 < 1.

@7

We then have

Dy = L= 9L = i/l = ig/s)(L + ig/s)
F 0T a0+ g0 =il
(88

Apart from the cutoff poles, S, has only one pole
at w = 0, and S; has two poles at w = 0, w,. In
accordance with Table V, we can assign the bound
states such that

b, =1 (bound state at w = 0),
by = 1 (bound state at & = w,), (89)
with the coupling constants A, = £ res (BD)..,,

Az = 2res (D)yuo,, OF

e e

. (90)
= 28(1 -t 8)(81 — $2)(k -+ ) 1
As = we(l — 8)(81 + 82k — 82) (1 B K2> > 0.

The position w, of the bound state in channel 3
and the coupling constants X,, \,;, are shown in
Fig. 1 as functions of B, Using (53) and (54), we
find that A¢/» = 0, and

Ad, = Ad; = —m, (91)

which fulfills Levinson’s theorem. The only zeros
of BD on the physical sheet are at the roots of
B? = 1. Therefore S, has no zero and S; has a
zero at w = w;. This means that on the second
Riemann sheet S, has no pole, and S; has only one
pole at w = «,, which represents a virtual state.

For B, > 0 we have K, = 1, K; = 3. The roots
of B = 41 are real. Of the three roots of B = 0,
one is at w = 0, and the other two are symmetrically
placed about the origin, either on the real axis be-
tween w = =1 (if 8, < 1/m), or on the imaginary
axis (if 8, > 1/#). There is also the possibility that
all three roots are at w = 0, but this Lmiting case
need not be considered separately. We denote the
roots as follows:

B(w) w s = (1 — &)}
0 0 1
:!:0)() 8y (92)
:l:]. .’.‘i:wl 8
+2 Fuws 82 '
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where

for 0<By<l/m: O0<wp <o <oy <1,
O <8 <8 <o <1,
0 <w <wy, <1, Rew, =0,

0 <8 <8 <1 < s,

93)
for 8, > l/=:

We then have

D(w) (1 'l@Q ?'Q/K)(l - "/Q/So)(l -+ zﬂsl)

A+ i1 + i/ + dg/s)A — ig/s))

94)

Apart from the cutoff poles, S, and 8; have a pole
at w = 0 and nowhere else. In accordance with
Table V, we can make the assignment

by =1 (bound state at w = 0},

bs = Gs {95}

with a coupling constant A, = £ (res BD) ., Or

v ) G () >0

This is always positive because ("' — 8,) has the
same sign as 1 — &, as indicated in (93). In Fig. 1,
A, is shown as g function of 8,. Using (53) and (54)
we find that A¢/7 = 1, and

Ady = ~—m, 8 =0, 97)

which fulfills Levinson’s theorem. On the physical
sheet S, has a zero at —w,, and 8 has a zero at ;.
These represent poles on the second Riemann sheet,
and are therefore virtual states.

There are bootstrap solutions not having the
target baryon as a bound state. Although these solu-
tions are to be ruled out because they do not lead
to physically reasonable models, they may still be
of some mathematical interest. We study them in
Appendix C.

5. NEUTRAL PSEUDOSCALAR THEORY

The neutral pseudoscalar theory describes the
scattering of a neutral pseudosecalar P-wave meson
from a fixed baryon of spin %, with conservation
of total angular momentum. There are two channels
labeled by a = 1, 3, corresponding respectively to
total angular momentum % and £. The crossing
matrix is the same as (39). The theory is mathe-
matically equivalent to the symmetric sealar theory,
except for the following differences:

1. h, = (Sc - 1)/927}:

2. 8. — 1+ 0(g), (98)
w=s1

3. Pole terms of S, have opposite signs
to (57).
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Under Theorem 1 in the last section we proved
that there are no bootstrap solutions of the sym-
metrie sealar theory for ¢ = 0. That proof applies
without change to the present theory, because it is
independent of the conditions (98). Hence we need
to consider only ¢ > 1. Owing to the first condition
of (98) the high-energy conditions are the same as
for the symmetric scalar theory if statements made
about ¢ in that theory are taken to be statements
about ¢ — 1 of this theory. For example, a solution
with no subtraction imposes no restrietion on n if
¢—1=0,andrequiresn > ¢ - 1ifc—12>1,
For K subtractions we have ¢ > (3 + K), with
the following requirements:

= 3(3 + K):
No restriction on S{w), D{w),

e> 33 + K):
n > 3(3 + K), plus conditions on D{w).
The threshold condition 2 of (98) requires
D) = 1+ 0(), 5@ = 0g),

w1

(99)

(100)

which represent extra restrictions on the solution.
In particular the locations of poles and zeros of D(w)
must satisfy the first equation of (100), and B(w)
must have at least a second-order pole at w = 1,
ie, N > 1.

The theorem that there exists no bootstrap solu-
tion without subtraction also applies to the present
case. The proof given earlier requires only the follow-
ing amendments: (a) The case ¢ = 0 is now replaced
by the case ¢ = 1; (b) The case n > ¢ > 1 is now
replaced by the case n>¢—1>1; {¢) The condition
N > 0 is now replaced by N > 1. The increase
of N by 1 compensates for the decrease of ¢ by 1,
and preserves the previous proof.

The bootstrap solutions satisfying a once-sub-
tracted dispersion relation are considered in Appen-
dix D. In this case ¢ > 2. The requirement that
the target baryon be a bound state, and that no
bound state have a smaller energy than the target
baryon uniquely determines a two-parameter family
of solutions with ¢ = 2, the parameters being the
cutoff momentum «, and an effective subtraction
constant.

The unique family of solutions corresponds to

Blw) = ¢ (B + Bw®), (101)

where 8, and B, are constants restricted by the
condition

Bo + 8> 0. (102)
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They will be further related by the threshold condi-
tion, so that only one is an independent parameter.
The S-matrix elements are given by (40), with

Bw) = 3 +4x"" log (0 + 9
— (o 93)(50 + ;31092)}-
From (98) we verify that

(103)

he — w/logw,
s0 that one subtraction is needed.
From Table IV and (62) we find ¢ = 1, A¢/7x =1,
and

K, = 3, K, = 5. (104)

One of the roots of B = —1 is always real, while
the other two may be real or complex. One of the
roots of B = 0 is always at w = 0, while the other
four may be all real, all complex, or two of them
may be real and the other two pure imaginary.
The precise locations of the roots depend on the
values of B, and B,. Regardless of how the roots
are located, however, the function D{w) is completely
determined by (43) and the instruction that

D(w) have double poles at +i(x* — 1)}

simple poles at all the roots of B = 0, (105)

simple zeros at all the roots of B = —1.

and that there be no other poles or zeros.

It is clear that on the physical sheet, S, and S,
have their only pole at w = 0. The values of 8,
and 8, must be o restricted that (a) A, = —$§ res
(BD), .o > 0, so that the pole at w = 0 is a bound
state in channel 1; and (b) the threshold condition
(100) is satisfied. When this is done, we would have
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satisfying Levinson’s theorem. The two independent
parameters of the solution would then be the cutoff
momentum « and 8, or 8;. It remains for us to show
that the conditions (a) and (b) ean be satisfied.

We demonstrate the existence of the family of
solutions described above by constructing the sub-
family corresponding to

Bo >0, B > 0. (105)

By examining the graphical sclutions of B = +,
it can be seen that for v = 0 there are four complex
roots besides @ = 0, and for |y| > 1 there are two
complex roots besides a real one. The general prop-
erties of the complex roots can be found by a method
similar to that discussed by Wanders for the case
Bo > 0, 8, = 0 in the Appendix of Ref. 14. The
results are qualitatively the same as for the case
discussed by Wanders. We summarize them as
follows:

B{w) w

0 0, <z, =zx*
-1 — Wy, Y, Y (106)
+1 @, —Y, —y*

2 Wa, 2, Z*S

where w, and w, are real, and z, y, z are complex, with

0<w1<w2<1

Rez > 1, Imz >0, (107)
Rey > 1, Imy # 0,
Rez < 0, Imz = 0.

Both z and y approach 1 as 8,(1 — 8,) — 0, and
their magnitudes approach ® as g, —" . The func-

(108)

b, = A8/r = 1, and by = b, — A¢/x = 0, thus tion D(w) is given by
D) = &= i9/x)°(1 — ig)(1 + 1g/s)(l + ¢/g)(1 — ¢/aH( — ¢/g)(1 + ¢/¢%)
(1 + 4g/0* A + (1 — 2g/s)(1 + ¢/¢D — ¢/ — ¢/dVA + ¢/q)’
where We only give the result for the case (8, + 8,) < I,

8§ = (1 - w?)}}

G =0~ Img >0, (109)
¢ = " —~ 1)*; Im ¢, > 0.

The threshold condition (100) requires that
1 1 1 2
S 421 (—-«——)=1 2 110
8 + 2 Im % ¢ T (110)

which, for given «, is a relation between 8, and 5,.

for which s, and ¢, are easily calculable:

s~ 208, + 31)}*’

. a1y
gy = [Bo + B/ Gy + 3 ™",
Then (110) reduces to
By + B~ 31 + 7777, (112)

which is consistent only if « ~ 1.
The only pole of 8, and 8, on the physical sheet
is @ = 0, with residues consistent with the assign-
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ment of a bound state in channel 1, and no bound
state in channel 3. The coupling constant is A, =
—3 res (BD) 4uo, OF

o) Ei (4 D) 50

On the physical sheet S, has three zeros at the
roots of B = 2, which all appear to the left of w = 1.
On the second sheet, therefore, S, has three poles
representing virtual states, For S; there are three
zeros on the physical sheet at the roots of B = —1,
ie., —w;, ¥, ¥ On the second sheet, therefore, there
are three poles of 8;. The one at —w,; represents
a virtual state, and the conjugate pair y, y*, with
Re y > 1, represents a resonance of spin £.

For (8, + 8,) <« 1, (which requires x ~ 1), the
resonance pole in channel 3 is near threshold, and
depends only on «:

y=Q0Q+ =1+ +H% (119)

The position and width of the resonance are respee-
tively given by

(113)

Position = 1 __}_ i_(l + K-'l)wﬂ,
Width = 13+
6. SYMMETRIC PSEUDOSCALAR THEORY

Re y ~
Imy =~

(115)

kY7,

The symmetric pseudoscalar theory® describes the

scattering of a pseudoscalar P-wave meson of isospin
1 by a fixed baryon of spin £ and isospin 3. Among
the models we consider this comes closest to de-
scribing a physical process, ie., low-energy pion—
nucleon scattering. There are four channels that are
best labeled by two indices (@, 8), in which « refers
to the total angular momentum and 8 refers to the
total isospin of the channel. We take the value
a = (1, 3), 8 = (1, 3) to refer to respectively angular
momentum and isospin (3, ). The S-matrix elements
will aceordingly be denoted by S.s(w). If we regard
$ as 8 vector in a product space spanned by vectors
of the form ¢ .5, then the crossing matrix is a direct
product

@=A XA, (116)

where the first A acts on ¢,, the second on ¢;, and
A is given by (39), i.e.,

aa’ﬂ'.aﬁ = Aa’rxAﬁ‘ﬁ- (117)

In the Lagrangian formulation of this theory one
has the restriction 8,3 = 8;,, but we do not insist
on it here.

The most general solution of the model is so far
unknown; but the form of the crossing matrix shows
that there exists a special class of solutions for which
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8.3 = 8.8s where S, is formally a solution of the
neutral pseudoscalar theory:

su=Dp- e B2 2
B,—1B,— 1B, +1B, +1
513“1)31% 1323—2 1?%—-?’ (118)
= ppl B Bn?

533:1)31%15;&7’

where B, and B; are two functions of the form (41),
and D is of the form (43). There are therefore three
arbitrary functions. The threshold condition and
high-energy conditions of the neutral pseudoscalar
theory must be satisfied separately by D and by
B, and B,, because the behavior of B, and B, at
threshold and at high energies contribute additively
to the behavior of §,;. Similarly, a bootstrap solution
within this class exists if and only if B, and B,
separately lead to bootstrap solutions of the neutral
pseudoscalar theory,

It is not necessary to consider (118) any further,
except to point out that (118) does not contain the
physically interesting solution in which there is a
bound state 8t w = 0 in channel 11, a resonance
in channel 33, and neither bound state nor resonance
in other channels.

APPENDIX A: PROOF OF EQ. (30)

The roots of the equation H7'(w) = 0 can oceur
only on the real axis between w = 41. To find
their number we apply (29) by taking f(w) = H ' (w),
and choosing the contour to be a counterclockwise
circle centered at = 0, with radius 1 — & (e — 07).

From (28), (18), and (19), we obtain

L 20 ["de W) 5 Ga
Hl(co) - T Jq OJ’ w'2 -_ w2 n €n T W
— aw + d, (A1)
and H_,(w) = H,(—w). The only poles of H'(w)

are the CDD poles ¢, which lie on the real axis.
We assume [e,] # 1. This involves no loss of gen-
erality because, H,(w) being a continuous function
of ¢, we may displace e, slightly. By convention
we displace e, towards w = 0 by 2, if originally
le)] = 1, thus preserving the definition (25). Let
HNw) = [Ha ()] e, (A2)
and let Ay, denote the net change in 5, when

goes around the contour once. Noting that the value
of the integral in (29) is An,/2x, we have

No. of poles of H,(w) = M + An./2r. (A3)
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In the limit ¢ — 0%, M is the number of CDD poles
with |e,] < 1. To compute An, we consider

cot na(w) = Re H'(w)/Im H'(w),  (A4)

which is single-valued along the contour. Therefore
A, may be deduced from the poles of cot 5, along
the contour: Each pole with + residue additively
contributes == to Ag,.

Since Re H,'(w) is finite on the contour, and since
by construction Im H'(w) £ 0 unless Im w = 0,
the only poles of cot 5, are located on the real axis
atw =1 — eand w = —1 +4 e It is then straight-
forward to verify (30) by examining the signs of
the residues.

APPENDIX B: ROOTS OF B(w) = v
From the form
Blw) = 7' sin”" @ — (iw/q)Bw), (B1)

we see that B is pure imaginary when o is pure
imaginary, because 8(w*) =8%(w), and B(—w) =F{(w).
Therefore statement 1 of (62) is obvious. From the
form

B@ =1 +i tlog o+ 0 - ‘gmw)] . B

we see that Im B # 0 if w is real and |w| > 1.

Hence statement 2 of (62) is obvious. Since B(w) =

— B(—uw), statement 3 of (62) follows.
All real roots of B = v must lie between w = +1.
They may be found by a graphical solution of

(1/m)sin™" 0 = wBw)/(L — &) +v.  (B3)

Recalling that the threshold condition requires
B(1) £ 0 we see that for any vy there is at least

w plone

2]

Fra. 2. The contour in the complex « referred to in the
calculation of (B5).
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TasLE VI. Contributions to Ay of Eq. (B5).

Contribution
From Conditions to
[2] + 4] n>0 |l > % 2n +1
vy=0 pB1) k
R 2n +1
+ = 2n +3
— -+ 2n — 1
- — 2n +1
n<0 ‘7' > 3 0
7 < % 1
[A] D] F—v)B(1) (3 +vB(1)
+ 4 2
+ - 1
- + 1
- - 0
each N, vl > 3 4
v=0 2
each N_ vl > % 2
y=0 0
one root on the real axis between w = =1, if
B(0) #= .

To establish statements 3-6 of (62) we calculate
the number of zeros of the function B(w) — « by
the same method as used in Appendix A. Namely,
we write

Blw) — v = |Bw) — v ™, (B4)

and let Ay be the change of 3(w) when w goes once
around the contour shown in Fig. 2, where the
detours [8,] are to be made around the poles B{w).
Then

K, = (A9/2r) + 2N — », (B5)

where N and » are defined in (60) and (63). To avoid
having too many different cases to cope with in
the calculation, we assume that 8(w) has no pole
at @ = =1. This involves no loss of generality,
because without affecting K., we can always dis-
place a pole of 8(w) at w = =1 by an infinitesimal
amount toward w = 0 along the real axis. Accord-
ingly we include all poles at @ = 41 in N, as the
definition (60) indicates. To calculate Ay, we consider

_ a'loglo 4 gl — Re[wBlw)/q
tan 7(w) = T = hase (o & 9) & Im [0B()/q]
(B6)

It is readily verified that tany is single-valued and
continuous at all junctions of different segments
of the contour. The contributions to Ay therefore
come only from the poles of tan # within each segment
of the contour: Each pole with 4= residue additively
contributes = to Ag.

The task of finding the contribution to Ay from
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Tasre VII. Anof Eq. (B5).

n>1 n<0
k8(1) > 0 k(1) < 0 A1) > 0 B(1) < 0
=0 9 + 1 + 4N, o + 3 + 4N, (k < 0) 3 + 4N, 1 + 4N,
2n — 1 + 4N, (k > 0)
Iyl > % 2n + 1 + 2Ny + N2) 1+ 2N, +N)

the various segments of the contour is straight-
forward, except perhaps for [2] and [4], for which
a helpful rule may be noted: In calculating the
denominator of (B6) it is sufficient to take Im
(w8/¢) =~ Im B, and to retain only the leading
power of 8. The reason is that any lower-order
terms ean affect the result only if they fail to vanish
at the endpoints of [2] and [4]; but Im {(w8/q) = 0
at the endpoints, which lie on the real axis.

The contributions to An from the different seg~
ments of the eontour are tabulated in Table VI. The
segments [1*], [3*] do not contribute. Adding these
results we obtain Ay as given in Table VII, from
which statements 3-6 of (62) follow.

APPENDIX C: ALL BOOTSTRAP SOLUTIONS IN
SYMMETRIC SCALAR THEORY WITH
ONE SUBTRACTION

We diseuss all bootstrap solutions of the sym-
metric scalar theory with one subtraction, but no
restrictions on the number and positions of bound
states. As explained in Sec. 2, a physically acceptable
solution must have the target baryon as a bound
state, and must have no bound state lighter than
the target baryon. It is of some mathematical in-
terest, however, to see the extent to which Levin-
son’s theorem restrictsthe bound states without
extra physical requirements.

Before limiting ourselves to one subtraction, we
note the following theorem.

Theorem. For any ¢ > 1 there always exist boot-

strap solutions with no bound state (with an appro-
priate number of subtractions.)

Proof. The theorem is proved by constructing an
example for each value of ¢ > 1. Let us choose 8{w)
such that

N.,=N_=9, n <0, B(1) < 0.

From (62) we find K, = 1 — » + 2N, where N
still remains arbitrary. By Table IV and (54) we
have A¢/m = o = 0, which is consistent with
b, = by = 0. We now choose D(w) to have zeros
only at all the roots of B = —1, and to have only

the poles of the cutoff function. Obviously this makes
b, = by = 0. The only remaining bootstrap condi-
tion is Af/x = b, = 0. To satisfy it we note that
A/ = 3(c — K,) = ¢ — A1 — » + 2N)], and
put accordingly¢c =1~ v+ 2N. For N =0, » = 0
necessarily, and we havee¢ = 1. For N = 1,2,3, -+,
v = 0, 1 independently, and we generate all higher
values of ¢, thus completing the construction. q.e.d.

All possible bootstrap solutions satisfying a once-
subtracted dispersion relation have ¢ = 1, and are
listed in the proof of Theorem 2 in Section 4D,
i.e., cases 1 and 2 of (83). These cases exhaust all
possible bootstrap solutions with ¢ = 1, because
(a) any solution with ¢ = 1 needs at most one sub-
traction, as we can see from (46), and (b) a bootstrap
solution must have at least one subtraction, which
is Theorem 1 of Sec. 4D.

We now construct all the bootstrap solutions con-
tained in cases 1 and 2 of (83). They can both be
included by choosing

Blw) = Bol — f®), Bl == 0. (CI)

Case 1 corresponds to f = 0, and case 2 corresponds
to f 5= 0. All relevant parameters for the two cases
are listed in the following table, in which the first
four columns are obtained from (62) and (54), the
next three columns are requirements imposed by
(79), and the last column is a consequence of (77):

v K, K, AMp/mzz p bio+bso
Case 1
(f=0)0 1 142 o 0014+m 1 (C2)
My 0
Case 2
G=0)1 2 242 o 00 O 0
where
.= {1, B1) >0 ©3)
0, 8(1) < 0.

The bootstrap conditions (64) can now be written

b, = % + (ABO + A6, + A02)/7r,

bl"‘b3=0',

(o))
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where (66) has been used. Furthermore, we have
from (72), (69), and (71) respectively,

Abo/r = [0 + Ky — 1 + byo + bsdl,
Al /r = 3(b,, — K,),
Agz/ﬂ' = %b;;z.

It should be noted that if b,, + bs, = 0, then
by = by, and by, = by, If by + bz = 1, then there
are two possibilities: (b, bso) = (1, 0), (0, 1). The
procedure for constructing bootstrap solutions is as
follows. For each sets of possible values of ¢ and
p in (C2), we consider all possible distribution of
bound states that can satisfy (C4) and (C5). To do
this it is necessary to know where the roots of B = v
are located. After this is done, the sufficient condition
for a bootstrap solution is that all residues at the
poles of S, have the correct signs (as given in
Table V), consistent with the assumed bound-state
distribution.

For case 1 we first consider 8, < 0, which requires
0 = 0. Then Ko = K, = 1. The roots of B = v
are as follows

(C5)

B(w) w
0 0

—1 —wy (C6)
2 w2

0 <w <o <1).

Thus m, = 0, and p = 0, 1. Only the following
choices of bound states can satisfy (C4) and (C5):

o P by bao biy bsx by by Bootstrap?

casela 00 O 0 0 0 0O yes
b 011 0 0 111 yes C7)
le 01 0 1 1 011 no
1¢ 000 0 1 111 no.

The information given above uniquely determines
D(w), and hence the complete solution, in each case.
The last column is arrived at by examining the
residues at the bound states, which we explain below.

Case 1a is automatically a bootstrap solution, be-
cause there are no bound states, and hence no further
conditions to satisfy.

Case 1b is the solution given in (88), which was
demonstrated to be a bootstrap solution.

Case lc requires

_ (1 =i — ig/x)
(1 + 191 + ig/x)’

D(w) (C8)

K. HUANG AND F. E. LOW

and that the pole of S, at @ = 0 must be a bound
state in channel 3. By Table V, A; = —§ res (BD) 4«0,
which we easily show to be negative. Hence the pole
represents a ghost state in channel 3, and this solu-
tion must be ruled out.

Case 1c¢’ is ruled out by similar arguments, which
show that A, < 0.

We consider now case 1 with 8, > 0, which requires
o =1, K, =1, K, = 3. The roots are located as
follows

B(w) w
0 0, tw,
-1 o (C9)
2 —wg
O <w<w <w <1).
We assume that w, % 0, so that m, = 0. This

involves no loss of generality because according to
(C2) z = 0. Only two subcases can satisfy (C4)
and (C5):

@ P bio bso by bsy b, by Bootstrap?
Caseld 111 0 0 010
11101121 no (C10)
Case 1d is that given in (94), which was demon-

strated to be a bootstrap solution.
Case le requires

= (=191 ~ 1g/)(1 — ig/s)(1 — 4q/s,)
A + @A + g/ + 7g/s0)(1 + ig/s)’
(C11)

yes

Case le

D(w)

8y = (1 — wi)}-

For the bound state in channel 1 at w = w,, Table V
requires A, = —% res {D/(B + 1)]...., which is
easily shown to be negative. Hence it is a ghost
state, and this solution must be ruled out.

We turn to case 2 of (C2), for which S, cannot
have a pole at @ = 0. This means that the target
baryon cannot be a bound state in this group of
solutions. We have

B(l—H>0

a={1
0 Bl-h<0.

Under each alternative above, there are two further
alternatives corresponding to f > 1 and f < 1.
To satisfy (C4) and (C5) we must have

(C12)

(C13)

and the following possible distribution of bound
states:

P = by = by = 0,
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¢ b,=b; byp=b; Bootstrap?
Case2a O 0 0 yes
2b 0 1 1 yes (f<1)
2 0 2 2 no (C14)
2d 1 1 0 yes (F>1)
2e 1 2 1 no.

To arrive at the last column we need to know about
the roots of B = . They are summarized below.
For ¢ = 0, K, = K, = 2. The roots are as follows:

B(w) )
f>n (<1
0 :E?:wo +ws , (C15)
-1 Wy, —of Wy, —w;
2 wg, Wz —Wg, W3

where, for f > 1:
0 < <w <o <uw <1,
res(B+ 1) >0 at

<0 at

-

-,

(C16)
and, for f < 1:
0 <y <oy, <wp < o < wi,
ress(B+1)"'>0 at o

For ¢ = 1, K, = 2, K, = 4. The roots are as
follows:

and —owf.

B(w) @
F>1 f<1)
0 twg, iwh +wp, ah
or all complex (C17)
—1 —ay, W] w;, 0]
2 we, —w} —wWy, ~Wh
where, for f > 1:
D<m <w <wp <of <wj <1,
(C18)

ress(B+ 1" <0 at —w and of;
and, for f < 1:
0 <wy <oy <wo <owp <of <wp <1
resB+1)7T>0 at w
<0 at of.
We now explain the last column of (C14).
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Tanre VIII. Al bootstrap solutions of symmetric scalar
theory with ¢ = 1. 8, and f are defined in Eq. (Cl1). Each
entry in the Table gives the case number followed by (b, bs),
where b, = No. of bound states in channel «. Cases 1(b)
and 1(d) are the only cases having the nucleon as a bound
state.

f#0
Bl ~f} >0

Bl -5 <0

2(d) (1, 0}

Case 22 is automatically a bootstrap solution
because there are no bound states.
Case 2b requires

D) = L=/ — 59/s0)(1 — ig/s,)(1 + 4g/5,)
A + ig/0)(1 + ig/s)(L + ig/s)(1 — ig/s))’
(C19)

8y = (1 - w?r)%r
or we may independently replace S, by SZ, S, by 8,
thus obtaining four cases in sll. For f > 1, the
bound state in channel 3 is always a ghost. For

f < 1 we obtain two bootstrap solutions correspond-
ing to

1 . bl a«t wl, b3
2. b1 at —Ws,

where b, means bound state in channel «. The
second alternative leads to bound states lighter than
the target baryon.

Case 2c¢ leads to a ghost state in channel 3 for
f > 1, and a ghost state in channel 1 for f < 1.

Case 2d leads to a ghost state in channel 1 for
f < 1. For f > 1 there are two bootstrap solutions
corresponding to

1. bl at wl',

2- bl a«t —®i.

The second alternative leads to a bound state lighter
than the target baryon.
Case 2e leads to a ghost state in channel 3 for
f > 1, and a ghost state in channel 1 for f < 1.
This completes the construetion of all bootstrap
solutions with ¢ = 1. The results are summarized
in Table VIII.

APPENDIX D: BOOTSTRAP SOLUTIONS IN
NEUTRAL PSEUDOSCALAR THEORY

at w}, (C20)

—‘O); y ba at

(C21)

We prove that among all the bootstrap solutions
of the neutral pseudoscalar theory with one sub-
traction, the family given by (103) and (105) is the
only one satisfying the physical requirements that
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the target baryon be a bound state, and that there
be no bound state lighter than the target baryon.

For one subtraction, the high-energy condition
(99) requires ¢ > 2. For ¢ = 2 there is no restriction
onn,and forc = 3,n > ¢ — 1.

We first rule out ¢ > 3. For this case (80) can
be satisfied only if ¢ = n + 1l or¢ = n -+ 2. The
latter is immediately ruled out because n > ¢ — 1.
Remembering that N > 1, we conclude that

N=1
N.,=N_=»=0 (D1)
K, =3+ 2n.
Applying (79), we obtain the further requirements
X=2z=0, D = M. (D2)

Thus the target baryon cannot be a bound state,
because p #= 1 -+ mo.

We turn to ¢ = 2. Applying (80), we find that
there are only five possible cases:

N N, N. n v K,
. 1 0 0 0,~-1 0 3
2. 2 0 0 0 1 4
3. 1 N.,+N_=1 0,—-1 0 5 (D3)
4. 2 0 0 0 0 5
5.2 0 0 0 1 4

Applying (79), we rule out cases 3, 4, 5, and obtain
the following requirements for cases 1 and 2:

NN.N. n +K. Xz1p
1. 1.0 00~103 00 l4+m, (D4
2. 2 0 0 0 1400 O

Only case 1 can have the baryon as a bound state.
It corresponds to

ﬁ(“’) = q—2(60 + Blwz)) Bo+ B # 0, (D5)

TasLe IX. Possible cases satisfying (D8).

Case o b1 b0 bu bs2 b bs
a 0 1 0 0 1 1 1
a2 0 1 0 1 2 2 2
as 0 1 0 2 3 3 3
b 1 1 0 0 0 1 0
by 1 1 4] 1 1 2 1
by 1 1 0 2 2 3 2
by 1 1 0 3 3 4 3
a 0 0 1 1 0 1 1
(23 0 0 1 2 1 2 2
[ 0 0 1 3 2 3 3
di 1 0 1 2 0 2 1
de 1 0 1 3 1 3 2
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where the last condition is necessary to satisfy the
threshold requirement (100).
With (D5), we have

K, =3, K, =3 4+ 20, Ap/m = o, (D6)
_ 1 sw>o0
0 Bg(1) < 0.

The following relations are obtained respectively
from (77), (72), (69), and (71):

bio + b = 1,
Aby/m = 1 + 1o,
Aby/m = 3(b, — 3),
Afy/w = 3by,.

If

D7)

Using these we reduce the bootstrap condition
b, = Af/7 to

b + %(bu - baz) = %(1 + 0')- (DS)
If this is satisfied, then the condition b, — b; = A¢/7
is automatic. The remaining task is to list all possible
distributions of bound states satisfying (DS8), and
then examine the residues. There are 12 possible
cases satisfying (D8), and they are tabulated in
Table IX.

Any solution with b,, = 0 cannot have the target
baryon as a bound state. Hence we rule out cases
€y, €2, C3, dy, and d,. Any solution with b,, = 3
or b;; = 3 must have at least one bound state
lighter than the target baryon, for a graphical
examination of the equation B(w) = v (y = —1,2)
shows that if all three roots are real, then at least
one of them lie in the interval —1 < o < 0. Hence
we rule out cases a, and b,.

A closer examination of the graph for B(w) = ¥
further rules out cases a, and b;. In case a,, b;s = 2.
The graph of B = 2 shows that if there are three
real roots, then two of them must occur at w < 0,
and the other at w > 0. Therefore at least one
bound state in channel 3 must be lighter than the
target baryon. In case a,, a similar argument shows
that at least one bound state in channel 1 must
be lighter than the target baryon.

We are now left with only the cases a,, b;, and b..
Explicit eonstruction of D(w) for each of these cases
show that case a, has a ghost state in channel 3,
and case b, has a ghost state in channel 1. In verifying
this, we should remember that for the present theory
the coupling constants have opposite signs to that
given in Table V.

We have eliminated all cases except case b;,which
is the solution described in Section V.
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Several ideas from the geometric side of Lie group theory are presented that may be relevant to
the search for groups containing the internal and Poincaré group symmetries.

1. INTRODUCTION

HERE has recently been interest in investigat-

ing symmetry groups that contain both the
Poincaré group and the internal symmetry groups.
One would think that this choice of larger group
is partially determined by geometric considerations.
In this paper, we suggest one such geometric prop-
erty, namely that the larger group act as a trans-
formation group on a compactification of Minkowski
space. Certainly, it seems self-evident that the var-
ious ““asymptotic conditions” that one finds in phys-
ics should be related to the geometric behavior of
points in Minkowski space near its boundary, in a
suitable compactification. In view of the expected
covariance with respect to the Poincaré group, it
also seems reasonable to require that the compact-
ification be “equivariant’’ in the sense that the trans-
formations defined by the Poincaré group can be
extended to act on the larger compactification. To
restrict the number of possibilities, perhaps one
should also require that there is a larger group con-
taining the Poincaré group that acts transitively on
the compactification. This leads to the following

Definition. Let G, H, ', H' be Lie groups, with
H a subgroup of @ and H’, H' and G subgroups
of . Suppose that H N G = H. Then, the coset
space G/H may be considered as a subspace of G'/H'
by assigning the coset gH’ to the coset gH, for g € G.
If in addition G'/H’ is compact, we will say that
it is a homogeneous space compactification of G/H.

The case of interest in physics is that where @
is the Poincaré group and H is the homogenous part,
i.e., the Lorentz group, so that G/H is Minkowski
space. The general theory of these homogeneous space
compactifications is being developed in a series of
papers.’> We propose here several candidates for
G’ and H’' that may be related to SU(3) symmetry

* Work performed in part under the auspices of the U. S.
Atomic Energy Commission.

1 R. Hermann, Proc, Nat. Acad. Sci. U. 8. 51, 456 (1964).

2R. Hermann, “Compactifications of Homogeneous

Space,’”” J. Math. and Mech. (to be published).

and scattering theory and discuss some of their geo-
metric properties. The general background for this
work is Cartan’s theory of symmetric spaces.®

2. THE CONFORMAL COMPACTIFICATION
OF MINKOWSKI SPACE

R" will denote the real Euclidean space of n dimen-
sions. We start off with R®, defined by coordinates
Y1, '+, Ys, Which are to be considered as functions
on R°. A point of B’ is a vector (y,, - - - , ys). P*(R),
the real projective space of five dimensions, is ob-
tained by identifying two such vectors that differ
only by a scalar, nonzero multiple. Let ¢ be the
polynomial y; -+ -+ 4 ¢ — y2 — y2 Since g is
homogeneous, the relation ¢(y) = 0 passes to the
quotient to define a five-dimensional quadric hyper-
surface Q in P°(R). Let GL(6, R) be the group of
invertable 6 X 6 real matrices, acting on R® in
the linear way. It too passes to the quotient to act
on P*(R) as the projective group. Let GL(6, R, g)
be the subgroup of GL(6, R) that preserves g.

Let z,, - - -, 2, be the real functions defined by

=Y/ (Ys — Y1), v Ty = Ys/(Ys — 41).
Since they are invariant under scalar multiplication
on R they pass to the quotient to define functions
everywhere on P°(R), except on the hyperplane
Ys — Y = 0, which will be used to identify this
subset of P°(R) with R* and to define the Lorentz
metric ds’ = dz} -+ da} + dz? — dz?. Let us compute
this ds” in terms of the y’s.

dr, = (y dy: — ¥, dy)/y", with y = y, — y,,
dzi = (* dyz + v dy* — 2y.y dy dy) /Y,
ds = (dys + -+ — dd)/y’
+ [y(ys + v1) dy* — y dy(dye) — d(y)*1/y".
The numerator of the second term is
Ys + ) &y’ — y dy(dy(ys + y1) + d(ye + 1))

= —y'(dys — dip),

3 8. Helgason, Differential Geometry and S tri
(Academic Press’ Ine., New York, 19&12). ymmetric Spaces
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whence
vy ds’ = dy; + -+ — dyi — dys. (1

Now, GL(6, R, ¢) preserves the right-hand side,
hence preserves ds® up to a scalar factor, ie., is a
conformal transformation of the Lorentz metric. It
is well known that every conformal transformation
is of this form. (In fact, we have just given the
classical Klein construction of the conformal group.)
The conformal group acts only “locally” on Min-
kowski space, but acts globally on the compact space
Q in which Minkowski space is imbedded.

The subgroup of GL(6, R, g) corresponding to
the Poincaré group can most readily be found by
working backwards to the usual definition of the
Poincaré group. Consider a linear transformation
R®, and let y!, - - - , ¥} be the transformed functions,

ie.,
¥l = 2 a:ys.
1
Let 2}, - - - , o} be the transforms of the z’s,
! = _y
) Ys — U
Y2
_ Z Wiy Z % e — U
Z (@s; — @1;)Y; Yo
i ag; — QA ]
' Z,: (@ = @) =

A transformation of the Poincaré group gives a rela-
tion of the form

z, = O bur; +6, 2<1i<5.

i=2
Comparing coefficients gives

b;; = a; for 2<4,j<5,

a:; = 6;(aea — an), 2)
Qig = ci(a66 — ).

On the other hand, a group closely related to
SU(3) is a subgroup of GL(6, R, q). This can be
seen qualitatively as follows: If everything is made
complex, the group leaving ¢ invariant is just
S0(6, C), the orthogonal group in six variables,
i.e., GL(6, R, q) is a “real form” of SO(6, C). SU(3)
is known to be a subgroup of SO(6, R), which is a
compact real form of SO(6, C). Hence, if one is
willing to ignore the distinction between real and
complex coefficients (which is more-or-less all right
if one is concerned with finite-dimensional repre-
sentations of the group), SO(3) can also act on Q.

ROBERT HERMANN

More precisely, proceed as follows: Introduce the
complex variables

2 =y + 1y, 2o =Ys+ W, 2= Ys + W,

where 7 = (—1)} This means relabeling R® as (%,
the spare of three complex variables. An arbitrary
element of GL(6, R, q) permutes the z’s and their
conjugates. The subgroup that permutes the ¢’s alone
is a subgroup which is a real form of the complex
group whose compact real form is SU(3). Then,
we have the possibility of realizing the vectors of
the observed representation of SU(3) as “wavefunec-
tions” that “live” on @, just as in ordinary Lorentz-
invariant physics the wavefunctions “live’” on
Minkowski space.

The reader might ask: Why do we bother to use
such an elaborate compactification of B*, when there
is a very simple one available, namely the compacti-
fication obtained by tacking on a single “point at
infinity.” The answer to this is that it is precisely
the distinction between timelike and spacelike lines
in Minkowski space that forces such an elaboration.
For, in the one-point compactification, all lines meet
at the same point at infinity. Both for physical and
geometric reasons it is desirable to use compactifica-
tions which reflect this fundamental distinction. We
might remark that if one started with Euclidean
R, precisely the one-point compactification is ob-
tained: For, g(z) would be z; + 25 + --- - 2l — 22,
@ — R* would be determined by the relation 2, — z
= 0 and ¢(z) = 0, which is satisfied by precisely one
point.

It is very easy to compute the limits of lines in
Minkowski space. Suppose s — sz = s(zy, --+ , Z,)
is such a line. Along such a line, 2, — 2, should
approach zero; we can suppose without loss of
generality that 2, — 2z, = 1/s. Thus, the line ap-
proaches, say, the point (z,, z1, s, Zs, 4, 2,). It i
then seen using relations (2) that the translation
subgroup of the Poincaré group maps this point
into itself, i.e., acts as the identity on the boundary
of R*. Since the translations from an invariant sub-
group, and the quotient of the Poincaré group by
it is the Lorentz group, we see that the Lorentz
group passes to the quotient to act on the boundary.
The isotropy subgroup of the Lorentz group at the
boundary point is the Wigner “little group,” hence
there are esentially three different orbits of the
Poincaré group on the boundary, corresponding to
whether the vector x = (x;, +-- , z,) is time-,
light-, or spacelike. Then, the “wavefunctions’ cor-
responding to the representations of the Poincaré
group can be considered as functions on the boundary
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of Minkowski space in the conformal compactifica-
tion, rather than, as customary, as functions on the
mass shell.

Now we turn to indicating possible relations to
the thory of asymptotic behavior of solutions of
equations of the form

Oy = Vy. 3

(This is the mathematical problem inherent in scat-
tering theory, of course.) Now, the D’Alembertian
operator O is the Laplace-Beltrami operator asso-
ciated with the Lorentz metric ds’. If ds® is another
metric conformal to ds?, i.e.,

ds’ = ds"* /N2,
then
O¢="N0Oy¢y+ -,

where [0’ is the Laplace—Beltrami operator with
respect to the primed metric, and the dots indicate
terms of higher order in A. Since (y;, --- , ¥s) are
homogeneous coordinates, we can normalize so that,
say, ys = 1. @ is then determined by the relation

i+ —yi= 1L @
Then, if ds’”* = dy? + --- — dy?, we know that
ds’ = ds’*/(z, — 1)°,

so that A = y, — 1. [0’ is the Laplace—Beltrami
operator on the hyperboloid (4) with respect to the
metric that is induced from the s-dimensional Lorentz
metricon (y,, - * -, ¥s) Space, 5o remains well behaved
near the boundary of R* in Q. A can be written in
more familiar terms:

Az + 1) =y§+ v —?/::)\2(1;4—

so that 1/A grows as the square of the Minkowski
distance.

- ZZ)y
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3. COMPACTIFICATION OF MINKOWSKI
SPACE IN P(C)

We now briefly indicate another possible com-
pactification of Minkowski space that is more closely
related to SU(3). One of the most remarkable facts
about the observed SU(3) symmetry is that only
the representations of the adjoint group SU(3)/Z,
seem to have appeared. [Z; is the center of SU(3),
and is the eyclic group of order three.] The rep-
resentations of the other groups that appear in
physics (e.g., the Poincaré and rotation groups) all
occur by decomposing the geometric action of the
group on & space possibly with an attached homoge-
neous vector bundle to account for internal sym-
metries. If it should happen that SU(3) also enters
physics in this way, (which might indicate a “mod-
ified” geometry underlying physics, just as general
relativity ‘“modifies” the Minkowski geometry), it
would be to a crucial question whether the center
of SU(3) acts as the identity. Now, the simplest
such space is P*(C), the two (complex)-dimension
projective space. It is obtained by starting with C?,
the three-dimensional complex vector space, say with
coordinates (z,, 2,, 2;), and identifying the two vectors
that differ by a complex scalar multiple. SU(3) acts
on C® in its usual linear way, and passes to the
quotient to act on P?(C), with the center acting
as the identity on P?*(C). Off the hyperplane at
“infinity’’ determined by z; = 0, homogeneous coor-
dinates can be introduced, say 2,/zs, 2:/2;, identifying
the complement of the hyperplane with C?, which
can be identified with B*. Again, the Poincaré group
on R* would extend to an action on P*(C), and the
same procedure could be used to determine the
D’Alembertian near the boundary. However, it
would not be conformal to an operator behaving
nicely near the boundary, hence the asymptotic be-
havior would be expected to be more complicated.
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We study the problem of subtractions in potential scattering theory. We show that the single
spectral funetions can be obtained by analytic continuation of the Mellin transform of the double
spectral function. The N/D method could thus be aveided, in principle.

1. INTRODUCTION

HE Mandelstam representation in potential
seattering can be written down, following
Blankenbecler, Goldberger, Khuri, and Treiman':

is, ) = () + _,:f f ds’ di’ p(s', 1)

(8" — st — Hrte?
+ZSF+(2 > klf Pk(s) ds, Im s = 0.
(n

Using only unitarity it is possible to calculate
the double spectral function p(s, t),' from the asymp-
totic behavior of the amplitude for s — . We
would like to be able to calculate the simple spectral
functions p;(s"), the position of the poles —s; (bound
states) and the value of their residues I';(f), without
having to come back to the Schrédinger equation
or to use partial wave expansions, which are both,
in some sense, foreign to the Mandelstam rep-
resentation.

In this paper, we limit ourselves to the problem
of the simple spectral functions. The results for the
problem of the poles and their residues are given
in the conclusion. Their demonstration can be found
in?

II. THE PRINCIPLE OF THE METHOD

The p,(s) are, for p < L;and s > 0, the derivatives
taken at ¢ = 0 of the absorptive part of the amplitude
f.(s, t). More precisely we have

pp() p' atvf(s t)i 2y ¥y S LO! (2)
because of the fact that

_ tLo+1 +eo p(s ?:’} dt; p=Lsy .
O M e RO

1 R. Blankenbecler, M. L. Goldberger, N. N. Khuri,
and 8. B. Treiman, Ann. Phys. (N. Y.} 10, 62 (1960).
2 D. Bessis, thesis, Paris, 1965,

If we evaluate the derivatives at ¢ = 0 of f,(s, t)
for p > L, we get
1 a" (s g,')
p' atﬂ' f (8 t) f lp+1 dt’y p > L(). (4)

Equation (4) only has a significance if p > L,
because for p < L, the integral in (4) is divergent.
Otherwise the number of subtractions could have
been reduced. Let us suppose that a meaning can
be given to the integral for p < Lo It could then
happen that the functions we obtain for p = 0, 1,
, Lo be precisely the p,(s). One possibility is that
the analytic continuation (if it exists) of the integral
(4) for the values p = 0, 1, - -+, L, gives the fune-
tions p,(s). We demonstrate that it is so.
The demonstration results from the following
steps:

(A) Using the expansion of the amplitude in
partial waves, we calculate the derivatives at £ = 0
of f,(s, t). The formula we obtain, allows us to
define without difficulty, an extrapolation for p
complex of the derivatives of 1,(s, #):

v() ‘ atp f (S t)t¢=~0 (’5)

The extrapolated function obtained in this way,
R(p, s) has the following properties:

(1) RE(p, s) is a meromorphic function of p for
Rep> —1(s> 0);

(2) for Re p > L, R(p, s) is holomorphic in p
(s > 0);

(3) forRep > Lyand |p| — =,

]R@, S)i < Cea tImpl+5Re1’,
where C is a constant independent of p, as well as

aand 8, and « < 7, and

@ R,9 = RO = 255160 Dl

for p=20,1,2,:, ©.
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(B) The study of the function

Rp9 =1 [ ¢

will show us that:

p(s, t)dt,

Ip+1

(6)

(1) R(p, s) is holomorphic in p for Re p > L,
(s> 0); ) )
(2) R(p,s)isbounded by: Ce?'™>!*8Re> (s~ ();

with C, &, §, constants independent of p and & < =;

@ R0 = R = 5 T3 1.6, Olimo

for p =L, + 1, Lo+ 2, , .
(C) If one applies Carlson’s theorem® to the
function
R(p, s) — R(p, s)

which vanishes for p = Lo + 1, Ly + 2, --- , o
which is holomorphic for Re p > L,; which is
bounded by C’e* '™?'*#"Rer when |p| — « and
Re p > L,, with

C' = sup [C, O],
B’ = sup [8, Bl,

o' =sup [a, & <,
we see that
R(p,s) — R(p,s) = 0. G
(D) Itfollows that R(p, s) actually has an analytic

continuation for Re p < Lyatleastupto Rep > —43.
The single speetral functions are simply equal to

Pn(s) = R(pr S), r=20,12,- y Lo. (8)

We now give a rigorous demonstration of the prop-
erties (A) and (B).

Remark: To be concise, we shall say that a function
s “Carlsonian” in the variable z if (1) it is holo-
morphic in z for Rez > N, N finite; (2) for |z] —
Re z > N, it is bounded by Ce®'™*'*#%e = with (C,
a, B finite constants independent of z and o < .

III. DEFINITION OF THE FUNCTION R(p, s)
We know that the absorptive part of the amplitude
can be written
=0
f.(k, cos 6) = % > @EL+ 1)
=0

X Im (I, k)P,(cos 6), k>0, 9)

3 M. Froissart, High Energy Properties in Theoretical
Physics, Trieste, Ita]y, 1962 (International Atomlc Agency,
Vienna, 1963), p. 38.
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with s = k* and cos 8 = 1 + ¢/2s. If we use Neu-
mann’s theorem, we see that this series converges
uniformly with respect to cos 6, inside every ellipse
(&) of the cos 6 plane, having foei —1, +1, and
in which f,(k, cos 6) is holomorphic in cos 8. We
know from the formula (3) and the fact that p(s, £) =0
for ¢ < 4u? 4+ ui/s,’ that the greatest ellipse &
passes through the point

cos O, = 1 + 4u3/2s + ui/25°. (10)

If we go to the ¢ plane, we see that the series

=0

fk, O = @+ 1) Im {1, HP.(1 + £/25) (11)

=0

Ead o

converges uniformly in ¢, when ¢t € §,, where (8,)
is an ellipse in the ¢ plane having foci 0 and —4s
which passes through the point 4u2 + pi/s. This
ellipse which is s dependent always contains in its
interior the circle of center 0 and radius 4u;.

Then, when [f| < 4u2 Eq. (11) is a series of
holomorphic functions of ¢, which is uniformly con-
vergent with respect to ¢.

It is known* that we can differentiate the series
as many times as we like. The series of derivatives
is still uniformly convergent and equal to the deriva-
tive of the funetion. So,

9°
k ﬁ fa(kr t)l[t[<4po’

Il=w

Z Q1+ 1) Im f(I, HPP (1 + 1/2s) .

(28)”

In particular,

L2 1 Olieo = o 2 @1+ D
X Im f(I, )P (1). (12)
But we have®
P;a)(l) = {(l + p) '/212p' (l - p)'v P S l
0, p > 1,
and so
(1/pY(8" /8. (k, £)cw0
_ 2 By I+ ! .
= [p!]222p+lk2p+l ; (2l + l) Im f(l' k) (l — p)! ’

;7% Valiron, Théorie des fonctions (Masson, Paris, 1948),
p.

5 L. Robin, Fonctions sphériques de Legendre (Gauthier-
Villars, Paris, 1957), Vol. 1, p. 77.
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if weputl = n + p, we get
(1/pN(@/38) (K, £)]imo = 2e™ 2"V 182 /I T(p + 1))

n=co

X 2 (2n + 1+ 2p)

X Imfm + p, O + 2p + D/nl.  (14)

It is then natural to introduce the function R(p, s),
defined for complex p by

26—-(2p+1) log 2k o

Rp,9) = e ;(Zn-l- 1+ 2p)

X fn +p, Of*(n + p*, KT@® + 2p + D/nl, (15)
through the use of generalized unitarity:
—iff(l, k) — *(I*, k¥)] = 2/, Bf*{*, k*).  (16a)

IV. STUDY OF THE FUNCTION R(p, s)

The function
2e—(2p+1) log2k/[r.(p + 1)]2

is an integral function of p. Let us look at a term
of the series:

(2n + 1 + 2p)f(n + p, Bf*(n + p*, k)
X T(n + 2p + 1)/nl.  (16b)

We know that f(/, k) is a meromorphic function of 1,
for ¥ > 0 and Re Il > —1 whose poles are at the
left of the line Rel = L, and above the line Im ! = 0,
when k is positive.®

As soon as n is greater than L,, and Re p > —1,
the term (16b) defines a holomorphic function of p.
We split the series into two parts:

n=L,

@) = 2 @n+ 142900 +p, B+ %, B)
X T+ 2p + D/n!,  (17)
%0 = 3 (@t 1+ 2+ p, b
X f*n + p*, HT(n + 2p + D/nl.  (18)

It is clear that =,(p) is a meromorphic function of
p, the poles of which are very simply related to the
Regge poles: to each Regge pole 1,(k), « = 1, 2,
«o+ , ay(k) at the energy k®in the ! plane cor-
responds a double series of poles in the p plane:

La(k) = 1o(k); la(k) — 1; (k) — 25 --- (19)
and
la(ky — Ux(k); Ih(k) — 1; Li(k) — 25 -+~ .

¢ D. Bessis, Nuovo Cimento 33, 797 (1964).
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We show that =,(p) is holomorphic in p, by showing
the uniform and absolute convergence of the series
(18). For this we need an upper bound on the
amplitude f(I, k) which decreases exponentially when
Rel— + .

It is known’ that for the class of potentials in
which we are interested, the amplitude is, for £ > 0
fixed and Re [ > L, |l = o, bounded by

Ce-—a(k) Rel , (20)
where
alk) = 2 log [g—ik + 1+ u§/4k2)*] > 0.
If we take into account the formulas
!> (2mm)ne™, n integer® (21)
and
IT@| < @n)} exp {[Rez — ()] log |2|
~ Imzargz — Rez + (12 Re2)™'} (22)

for Rez > 0.

We see, using Eqgs. (20), (21), and (22), that for
n sufficiently large, the general term of the series (18)
is less than

C’[2n + 1 + 2 |p]] exp {—2na(k) — 2(k) Rep
+ [+ 2Rep+ (Pl log [n + 2p + 1]}
Xexp{—2Imparg(n + 2p + 1)
—2Rep—1—(n+ 3} logn}.

When p is in any compact set, each term of the
geries (18) is bounded by the corresponding term
of an absolutely convergent series independent of p:
the convergence is therefore uniform and 2, is
holomorphic in p, for Re p > —13.

We see that E(p, s) is an analytic function of p
for each real value of s, which is holomorphic in p
for Re p > L, and meromorphic in p for —3 < Re
p < L, The poles of R(p, s) are given by Eq. (19).

We now show that R(p, s) is ‘“Carlsonian” for
Re p > L.

When Re z > 0 and |y| < %=, one can write

i = e f g T Torw gy (23)
L
From Eq. (23) we get
IT(z)| < exp [~ |Im 2|
+ Rez log (cos v) 'II'(Re 2) (24)

7 A. Martin, Nuovo Cimento 31, 1229 (1964). .

s B, T. Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, Cambridge, England, 1958),
p- 253.
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for any v satisfymg 0 £ v < 3r and Re z > 0.
When Re p > L, all terms of the series (15) are
holomorphic in p, and we have

2C?

R, s)| <o R

X exp {—-[2 Re (p + 1)] log 2k — 2a(k) Rep

=

— 2y [Imp[ + [(2 Re (p + 1)] log -

with

o= 2. [2n+ 1+ 2 pl] exp { ~n[2a(k)

n=0

— log (cos ¥)'1}T[(n + 2 Re (p + D1/al.  (26)
If we take into account that (o0 > 0,z > 0)
5, etz +1) T+ 1)
'ge n! [1 — e—p]l+z 4
"B .Tate+D_ ., Te+2
we see that o can be written, for
p = 2a(k) — log (cosy)™* > 0
or
v < arccose 2®™®, (26)
T2 R 1
o= [1+2lpl] ——————[ ‘if]’:;fm)})
. T[2Re(p + 2)] .
+ 28 [1 _ e—p]2 Re (p+2) ’
whence
s <22lp |+11[~[2R"_f]”—£(;fl,3, (@7
and

IR(p, 9| < 2C*/m)(2 p| + 1]
X exp {—[2 Re(p + 1)] log 2k — 2a(k) Rep
+ [2 Re (p + 1)] log (1/cos )}
X exp {2 Re [(p + 1)/2} log |2 Re (p + 1)|
—[2Re(p+2)]log (1 — e
— [2Re(p + 1)] log |p + 1]}

X exp {2 Imp arg (p + 1) — 2y |Im pl},
and finally

IR(p, 5)| < ClefBerraltmet
where C’, B, « are finiteand @ < 7 — 2y < .

(28)
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V. THE FUNCTION R(p, s)
The function
= 17" dt
E@p,s) = = yZa p(s, 1) (29)
T Japs2+p04/2

is the Mellin transform of p(s, t) with respect to .
To study its analytic properties in p, we need some
bound on p(s, t).

It has been shown in Ref. 9 that, for potentials
V(r), (1) holomorphic in Re r > 0, (2) such that
V()| < K/Ir| for [r] £ 1, p < 2; 3) [V()] <
K/lr|" e* " for |rl 1, 0> 0, > %; 0(s, 0) is
a continuous function of s and ¢, bounded by

Io(s, ] < C<V>{—i-ﬁ + QJ%L)—} . G0

where C(V) is a constant independent of s and ¢
and L, is the number of subtractions in ¢.

When Re p > L, + n n > 0, the integral con-
verges uniformly, because of the bound (30) on p(s, £)
so that the integral defines a holomorphic function
of p, for Re p > L,. Since

+@

~ 1
IR(p’ S)l S 7_|' 4po® +uot/s tRe p+1) lp(s t)l
<1 1o(s, )]
— T So? +ho/s t1+u+Lo ’ ’
and using the bound (30), we find
IR('P, S)I < C("Iy L09 ”'O)y (31)

where C does not depend on p or s.
This shows that for 0 < s < +»: R(p, §) is
holomorphic in p for Re p > L, and “Carlsonian.”

VL. THE EQUALITY OF R(p, s) AND R(p, s)

The function R(p, s) — R(p, s) is, for all positive s,
(1) holomorphic in p for Re p > L,; (2) “Carl-
sonian” for |p| — » Re p > L,, because it is the
difference of two ‘“‘Carlsonian” funections; (3) equal
to zero forp = L, + 1, Ly, + 2, --- , », by con-
struction.

It then follows from Carlson’s theorem that it is
zero everywhere. Thus E(p, s) has an analytic con-
tinuation which is R(p, s). This last function is
meromorphic in p for Re p > —31. The simple
spectral functions are given by

px(s) = R(k, s). (32)

9 D. Bessis, J. Math. Phys. 6, 637 (1965).
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VII. CONCLUSION

We have shown that the Mellin transform of the
double spectral function, defined only for Re p >
L, = number of subtractions, by

R(p S) lf ép-i-l (s, z)t

can be analytically continued up to Re p > —4,
into a meromorphic function of p: R{p, s). The
poles of this function R(p, s) are very simply related
to the Regge poles: to each Regge pole I{£) in the
{ plane correspond two series of poles of E(p, ),

Wey; Wk —1; k) —2; -,
rEy; )~ 1; R — 2

s>0

The simple spectral functions p,(s) are given by
pp(&) = R(TJ, S} for p = G’ 1, 2, . Lo‘

To complete our program, we would like to be able
o ealculate the bound-state energies —s!* and their
residues I'%(f), which we know are polynomials in
t, directly from the knowledge of p(s, 1).

If we start from the Mandelstam representation,

o, = 1) + o f a

e dt'pe(s’, t)
X Lo+l
N T 4 1

=1 g
s p,(87)
i? ____f ,:0 “[
+ 1}—;{3 Tdpg & — 8 ds

I=&s a=a{l) Ra g
+ 3 ey Bt e
=8 8+ 8

i o= 28{;

where &5 is the ath bound state of spin [ and binding
energy equal to —s%. As is known' the spin of a
bound state cannot exceed the number of subtrac-
tions Ly, 50 this can be rewritten

tﬁo +1 ES
5 f ds’
w 0

di’p(s’, 1)

f(s, &) = 1s(8) +

p=La

) FF.(s), 34
X j;m“ (8’ — 3)(5' — ﬁ)tnﬁoﬂ + ; (8) ( )
with
d$ Ll a=aii) ’Yl'!
= ’ 2. (35
o= HEope+ T X el

In partieular, we have

D. BESSIS

1 dy
Fo(S)”";fo mpo(S)

@+ DR;

36
s+ s7 (©6)

21} bound

states
By using a procedure analogous to the one deseribed
in this paper, but somewhat more complicated, it is
possible to show that the function F(p, s}, defined by

F {’pr 3} f i{‘i f {S —
has an analytic continuation F{;;:, s} to the left of
Re p= L, which is meromorphie down to Rep > —}.
The poles are the same as those of R{p, s} except
that there are no poles in Im ¢ < (. Moreover,
we have

o8, 1), (3D

Fis) = Flp,s) for p=0,1,2, -+, L. (38)
With this result, we see that Eq. (36) can be re-
written

drr 1 [ ds'pls, t’)} 1
AC, {TF(} é’p+‘?f'(} 3"“3 p=0 fS""s

o, 7}

;p+1

(21 + DRY

> :
peg sliboma ST 8

states

X A.C. {ifo

where A.C. stands for analytic continuation in p
varigble.

Equation (39) gives the solution to our problem:
to ealeulate the position of the bound states and
their residues knowing only the double spectral fanc-
tion, we only need the commufator of two operations.
The first one is the analytic continuation in p. The
second one is the integration over ¢'. This commuta-
tor applied to p(s’, ') gives a rational fraction whose
poles are the bound states.

‘We summarize here the conditions which we have
imposed on the potential and under which our re-
sults are valid:

(1) V(r) is holomorphic in Re » > 0;

@ VO <K/Fl", Il<1, Rer>0, p<2;

& Vel < Ke™™7/Irl",  Irl21,
Rer > 0, i > 0, v > %
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Some non-Landau singularities are discussed using the formalism of Fotiadi, Froissart,_ Lascoux,
and Pham. The simple cases of self-energy and vertex diagrams are treated, as well as the sixth-order

scattering ladder diagram.

I. INTRODUCTION

HE singularities of Feynman diagrams can be

classified into Landau and non-Landau types.
If the Feynman amplitude is studied as an integral
over the internal momenta (where the path of inte-
gration may be distorted to avoid integrand singu-
larities) the non-Landau singularities arise when the
contour experiences difficulties at infinity. In the
formalism of Ref. 1, the integration region is trans-
formed into a surface in a compact analytic manifold.
We choose to study some non-Landau singularities in
this formalism.

The vertex and self-energy diagrams have non-
Landau singularities of a very special type. These
arise because an extra effective denominator appears
in the integral when one transforms into the compact
analytic manifold. A more interesting case occurs
when one has more than one loop in the diagram,
as in the sixth-order scattering diagram.

II. SELF-ENERGY AND VERTEX DIAGRAMS

We change from

k,€C to (., - ,xs) EW C CP®
by
.’l:a=k¢, a=1)"':4) (1)
s =31 — k), oz, =1+ k%

5
{fo = xﬁ} = W.
1

In changing the integral from over k; to over the z;
variables it is shown in Ref. 1 that one gets an addi-
tional effective denominator of the form (zs + 2x5).
The non-Landau singularities of the self-energy
diagram of Fig. 1 occur when 1, 2, and (zs + 2z,)
are not in general position in W, and f and 2 are in
general position. [That is, the zeros of z;, zs —

NP
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ggggﬁc Energy Commission under Contract No. AT (30-1)-

1D. Fotiadi, M. Froissart, J. Lascoux, and F. Pham (to be
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K-P

Fic. 1. The self-energy diagram. _*_O__
P 1

K

2P o + §(xs + 225) X (M3 + P*—1), and z, + 225
are not in general position in W. M, has been taken
equal one.] In this case the only time the three sur-
faces are not in general position is when the inter-
section of these three manifolds is singular. That is,
when

5
in=i'x425y x5+2:c5=0, x6=0)

' @)
rs — 2P, + Lxs + 21)(M: + PP — 1) = 0,
and the four differential forms

5
> 2z, dr, + 2x5 des — %xs dxe,

2
dres + 2 dzs,  dzs, &)

dzﬁ - 2Pa dxa + %(dx(i + 2 dz5)(M; + P2 - 1)

are linearly dependent. [We have assumed, without
loss of generality in the conclusion, that z, # 0,
P, = 0.] This occurs as one sees easily when P* = 0.

In considering the vertex diagram of Fig. 2, the
non-Landau singularities arise when surfaces 1, 2, 3
and (zs + 2z5) are not in general position in W, but
1, 2, and 3 are. If 1, 2, and (x; + 2z;) are not in
general position we deduce as in the self-energy case
that P; = 0. By considering the other two cases
corresponding to omitting denominators 1 or 2 we
deduce the non-Landau singularity

Pi=0 or P,=0 or P:=0. 4)

The final case arises when all these sets of surfaces
are in general position but the set 7, 2, 3, and
(x6 + 2x5) iS not.

F1a. 2. The vertex diagram.
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Then
5 ) 1 .
12 r; = Z xs,
26 = 0, zs + 225 = 0,

2o -+ 2P2ar. + §(rs + 225)- (M3 4+ P; — 1) =0,
x5 — 2P1ax. + 3ws + 225)- (M3 + P71 —1) =0,
®)
and the five differentials

5
E 2z, dr, — % Ze dxs,
2

dxg, dxs + 2 dxs,

dzs + 2P, dx, + %(dxe + 2 dxs)(ﬂ’lg + P; - 1):
dzs — 2P, dz, + %(dxe + 2 dxs)(Mg + le’ - 1)
(6)

are linearly dependent. (Again we assume z, # 0,
P,, = P,; = 0.) This occurs when

PiP; = (Pi-Py)"; ™

Eqgs. (4) and (7) comprise the non-Landau singu-
larities of the vertex diagram.

II. THE SIXTH-ORDER LADDER DIAGRAM

The diagram of Fig. 3 is studied in Ref. 2. First
one maps k, k* into W, X W, C CP® X CP® similar
to what was done in Sec. II. There does not arise
in this case any effective denominators. Singularities
occur when 1, 2, 3, 4, 5, 6, and 7 are not in general
position in W, X W,. In general position all the
denominators except 4 are nonsingular manifolds.
We stay off the union of 1 and 7 and therefore may
take s = ys = 1. 4 is singular when z; = y; = —1%,
o= —yYg,a=1--+,4 > 122 =0 We call these
points SG. The set of denominators and their inter-
sections are singular in general position only where
they intersect SG. In general position a single de-
nominator other than 4 intersects S@ in a two-sphere
—+the intersection of two such denominators in a
one-sphere—the intersection of three such denom-
inators in a zero sphere. As in Ref. 2, we do not
impose momentum conservation at vertex V.

Pp 3V5 Ps

2 4 |6

1]z
»

P| K K P A

Fia. 3. The sixth-order ladder diagram.

2 P, Federbush, “Calculation of Some Homology Groups
Relevant to Sixth-Order Feynman Diagrams,” J. Math.
Phys. (to be published).

PAUL FEDERBUSH

Remaining off 7 and 7 and exploring the above
conditions, we find that there is the following cor-
respondence between surfaces, and some of the non-
Landau singularities where they intersect SG incor-
rectly:

6, P =0;

5, (P; + P)* = 0;

2, P} = 0;

3, (P, + P, = 0;
2N, P +P) =0 o
5§M8, P; = 0;
2N 3, P; = 0;
8N5, (Py+P,+Py+P) =0;
3N 8, (P, + P, + P = 0;
5M 2, (P, + P, + P} = 0.

We consider only one choice of three denominators,
the other choices can be obtained by judicious sub-
stitution. 2 M\ 6§ M 6,

Pg(Pl +P4)2 - [Pa'(Px+P4)]2 = 0.
9)

Note added in proof: Other singularities occurring
when the intersections with SG are incorrect arise
when certain external momenta are linearly depend-
ent (the external momenta are those associated with
the surfaces in question). For example, to 2 M 6 is
associated the non-Landau singularity with P, and
P, linearly dependent; to 2 M 5 M 6 the singularity
with P,, P;, and P, linearly dependent. (I would
like to thank J. C. Polkinghorne for a communication
on this point.)

IV. CONCLUSION

Non-Landau singularities, which may be calcu-
lated by the methods of Ref. 3 or by the present
type procedure, are of various types. In more com-
plicated diagrams they will depend on internal
masses. The non-Landau singularities that arise
from other than the effective denominators are
most interesting. In this viewpoint these arise from
considering the permanent singularities of certain
denominator surfaces or their intersections, in the
other method they arise from pinches involving the
discriminant. Much remains to be done to under-
stand the significance of these singularities.

3 D. P. Fairlie, P. V. Landshoff, J. Nuttall, and J. C.
Polkinghorne, J. Math. Phys. 3, 594 (1962).
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